期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effects of free iron oxyhydrates and soil organic matter on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils 被引量:14
1
作者 WANG Fang, PAN Genxing, LI Lianqing Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第5期618-624,共7页
Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthro... Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthrosol (Soil H) and Gleyic Stagnic Anthrosol (Soil W)) were investigated with and without treatments of dithionite-citrate-bicarbonate and of H2O2. The size fractions of aggregates were obtained from the undisturbed bulk topsoil using a low energy ultrasonic dispersion procedure. Experiments of equilibrium sorption and subsequent desorption were conducted at soil water ratio of 1:20, 25℃. For Soil H, Cu^2+ sorption capacity of the DCB-treated size fractions was decreased by 5.9% for fine sand fraction, by 40.4% for coarse sand fraction, in comparison to 2.9% for the bnlk sample. However, Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by over 80% for the coarse sand fraction and by 15% for the clay-sized fraction in comparison to 88% for bulk soil. For Soil W, Cu^2+ sorption capacity of the DCB-treated size fraction was decreased by 30% for the coarse sand fraction and by over 75% for silt sand fraction in comparison to 44.5% for the bulk sample. Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by only 2.0% for the coarse sand fraction and by 15% for the fine sand fraction in comparison to by 3.4% for bulk soil. However, Cu^2+ desorption rates were increased much in H2O2-treated samples by over 80% except the clay-sized fraction (only 9.5%) for Soil H. While removal of SOM with H2O2 tendend to increase the desorption rate, DCB- and H2O2-treatments caused decrease in Cu^2+ retention capacity of size fractions, Particularly, there hardly remained Cu^2+ retention capacity by size fractions from Soil H after H2O2 treatment except for clay-sized fraction. These findings supported again the dominance of the coarse sand fraction in sorption of metals and the preference of absorbed metals bound to SOM in differently stabilized status among the size fractions. Thus, enrichment and turnover of SOM in paddy soils may have great effects on metal retention and chemical mobility in paddy soils. 展开更多
关键词 paddy soils Cn^2+ sorption-desorption soil organic matter free iron oxyhydrates size fraction of aggregates
在线阅读 下载PDF
Dicyandiamide Sorption-Desorption Behavior on Soils and Peat Humus 被引量:15
2
作者 ZHANGHai-Jun WUZhi-Jie ZHOUQi-Xing 《Pedosphere》 SCIE CAS CSCD 2004年第3期395-399,共5页
The sorption-desorption behavior of dicyandiamide (DCD) is an importantchemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCDsorption-desorption on a phaeozem (Mollisol), a ... The sorption-desorption behavior of dicyandiamide (DCD) is an importantchemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCDsorption-desorption on a phaeozem (Mollisol), a burozem (Alfisol), a soil with organicmatter-removed and peat humus using the batch-equilibration procedure, and identified soilproperties that influenced DCD sorption. The sorption on peat humus was higher than that on thephaeozem and the burozem, with much lower sorption observed on the soil with organic matter-removed,indicating that soil organic matter was the main carrier of DCD sorption. Due to its amphipathicproperty the DCD molecule sorption on the phaeozem and the burozem decreased as pH increased fromabout 2 to 5, but a further increase in pH led to a rise in DCD sorption. The DCD desorptionhysteretic effect for peat humus was greater than that for the phaeozem and the burozem using 0.01mol L^(-1) CaCl_2 as the background electrolyte, suggesting that the hydrophobic domains of organicmatter may play an important role in DCD sorption. 展开更多
关键词 DICYANDIAMIDE peat humus soil sorption-desorption behavior
在线阅读 下载PDF
Phosphate Sorption-Desorption Characteristics in Two Inceptisols and an Alfisol of Chattisgarh, India 被引量:2
3
作者 A. K. DOLUI S. S. ROY 《Pedosphere》 SCIE CAS CSCD 2005年第5期611-619,共9页
Two Inceptisols and an Alfisol of the Indravati Catchment area in Chattisgarh, India, comprising several gradientsin physical and chemical properties were studied to relate phosphate sorption and desorption to soil pr... Two Inceptisols and an Alfisol of the Indravati Catchment area in Chattisgarh, India, comprising several gradientsin physical and chemical properties were studied to relate phosphate sorption and desorption to soil properties. Fromthe P isotherm curve, the standard P requirement (SPR) of the soils was determined. Phosphate sorption data were alsofitted both to the Langmuir and Freundlich Equations. The mean sorption maximum values for three different soil serieswere: Bastar > Geedam > Mosodi. The fraction of added phosphate sorbed for the 3 series followed this same trend asdid SPR; the phosphate sorption maximum and the maximum phosphate buffering capacity, which were estimated by theLangmuir isotherm; and the Freundlich constant 1/n. However, phosphate desorption, as well as the maximum recoverypercent did not follow this order. The phosphate affinity constant (K) was also different following the same progressionfor the 3 soil series as the Freundlich constant K’, which measured sorption strength. Meanwhile, an inverse order existedfor K and K’ versus the percent desorbed relative to the sorbed as well as the maximum recovery percent. In addition,significant correlation coefficients among sorption parameters of P and soil factors were found. 展开更多
关键词 ALFISOLS INCEPTISOLS phosphate sorption-desorption
在线阅读 下载PDF
Phosphorus Sorption-desorption Characteristics of Ditch Sediments from Different Land Uses in a Small Headwater Catchment in the Central Sichuan Basin of China 被引量:2
4
作者 WANG Zhenhua HE Min +1 位作者 WANG Tao ZHU BO 《Journal of Mountain Science》 SCIE CSCD 2012年第3期441-450,共10页
Investigation of phosphorus (P) sorption-desorption characteristics of drainage ditch sediments is important for better understanding on sediment P transport behaviors in ditches. Surface ditch sediment samples were c... Investigation of phosphorus (P) sorption-desorption characteristics of drainage ditch sediments is important for better understanding on sediment P transport behaviors in ditches. Surface ditch sediment samples were collected from headwater sub-catchment of forestland, sloping cropland, paddy field, and residential area in a representative catchment in the central Sichuan Basin. These sediment samples were used for determination of P sorption-desorption characteristics by a batch equilibrium technique. Results showed that the maximum P sorption capacities (Qm) in the sediments ranged from 159.7 to 263.7 mg/kg, while higher Qm were observed in the ditch sediments from the paddy fields. The Qm was significantly and positively correlated with oxalate-extractable Fe and Al oxides (r=0.97 and 0.98, p < 0.01), clay fraction (r = 0.78, p < 0.05) and organic matter (r = 0.95, p < 0.01). Sediment pH, clay and organic matter influenced the P sorption through amorphous Fe and Al oxides. CaCO3 content was negatively correlated with the Qm (r = -0.83, p < 0.05), implying that saturated CaCO3 (> 50 g/kg) would not increase P sorption capacity in the ditch sediments. The ditch sediments featured a linear desorption curve, suggesting that P release risk would be enhanced with the increase of the P adsorption. The P desorption rate was positively correlated with Olsen P (r = 0.94, p < 0.01), but negatively related to the fine particle-size fractions (r = -0.92, p < 0.01), the sum of the amorphous Fe and Al oxides (r = -0.67, p < 0.05) and the P sorption capacity (r = -0.59, p < 0.05). The ditch sediments from residential area had a higher P release risk than that from the other ditches of forestland, sloping cropland and paddy field. The P sorption index (PSI) derived from single-point measurement was significantly correlated with the P sorption capacity (r = 0.99, p < 0.01), and could be used for estimating Qm as 1.64 times PSI plus 24.0 (Qm = 1.64 PSI + 24.0) for similar sediments with highly calcareous soils and sediments. Ditch cleaning and sediment removal for the ditch in residential area were recommended in this area to reduce the P release risk. 展开更多
关键词 Ditch sediment Phosphorus sorption-desorption Sediment properties Land use
原文传递
Insight into the sorption and desorption pattern of pyrrolizidine alkaloids and their N-oxides in acidic tea(Camellia sinensis)plantation soils 被引量:2
5
作者 Yuting Lu Haolei Han +5 位作者 Yuexing Yi Yunfeng Chai ChenWang Xiangchun Zhang Xiangde Yang Hongping Chen 《Journal of Environmental Sciences》 2025年第2期350-363,共14页
Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are cruci... Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are crucial due to the horizontal transfer of these natural products from PA-producing plants to soil and subsequently absorbed by plant roots.This study firstly investigated the sorption/desorption behaviors of PAs/PANOs in tea plantation soils with distinct characteristics.Sorption amounts for seneciphylline(Sp)and seneciphylline-N-oxide(SpNO)in three acidic soils ranged from 2.9 to 5.9μg/g and 1.7 to 2.8μg/g,respectively.Desorption percentages for Sp and SpNO were from 22.2%to 30.5%and 36.1%to 43.9%.In the mixed PAs/PANOs systems,stronger sorption of PAs over PANOs was occurred in tested soils.Additionally,the Freundlich models more precisely described the sorption/desorption isotherms.Cation exchange capacity,sand content and total nitrogen were identified as major influencing factors by linear regression models.Overall,the soils exhibiting higher sorption capacities for compounds with greater hydrophobicity.PANOs were more likely to migrate within soils and be absorbed by tea plants.It contributes to the understanding of environmental fate of PAs/PANOs in tea plantations and provides basic data and clues for the development of PAs/PANOs reduction technology. 展开更多
关键词 Pyrrolizidine alkaloids sorption-desorption behavior Tea plantation system Acidic soil Linear regression model
原文传递
Sorption and desorption characteristics of sulfamethazine in three different soils before and after removal of organic matter 被引量:1
6
作者 Xiaona LI Yang SONG +3 位作者 Mingyun JIA Fang WANG Yongrong BIAN Xin JIANG 《Pedosphere》 SCIE CAS CSCD 2021年第5期796-806,共11页
Organic matter(OM)is the most critical factor in controlling the sorption-desorption of SMZ in soil,however,few studies have explored the effects of OM removal on these important behaviors among different soils.Batch ... Organic matter(OM)is the most critical factor in controlling the sorption-desorption of SMZ in soil,however,few studies have explored the effects of OM removal on these important behaviors among different soils.Batch experiments were conducted to investigate the sorption and desorption characteristics of SMZ in three different soils:fluvo-aquic soil(FS),paddy soil(PS),and red soil(RS).The SMZ sorption in the evaluated soils was dominated by physisorption.The SMZ sorption capacities of FS and PS,which had a relatively higher OM content than RS,were higher than that of RS.The SMZ sorption in FS was dominated by linear partitioning.In contrast,the SMZ sorption in PS and RS was mainly nonlinear surface adsorption.After OM removal,the SMZ sorption capacity was significantly reduced in FS but increased in PS and RS.Furthermore,OM removal restrained the sorption intensity of SMZ in soils.Relatively higher OM and clay contents inhibited the SMZ desorption in FS and PS.The strong negative desorption hysteresis of SMZ in the three soils indicated that SMZ was able to move into the soil solution,thereby posing a risk to humans.Taken together,the findings of this study showed that OM indeed plays an important role during SMZ sorption-desorption in soil. 展开更多
关键词 antibiotics ISOTHERM kinetics sorption-desorption soil organic matter
原文传递
Sorption and Desorption Phenomena of Urban Biowaste-Based Heavy Metals by a Ferralsol 被引量:2
7
作者 Emmanuel Ntambi John Stephen Tenywa Muhammad Ntale 《Journal of Agricultural Chemistry and Environment》 2020年第1期13-26,共14页
Background: The objective of this study was to examine the adsorption-de- sorption phenomena of heavy metals in an agricultural Ferralsol treated with sewage solid waste at rates usually applied for soil fertility man... Background: The objective of this study was to examine the adsorption-de- sorption phenomena of heavy metals in an agricultural Ferralsol treated with sewage solid waste at rates usually applied for soil fertility management. Methods: The study was carried out under laboratory conditions, using a Ferralsol sourced from Makerere University Agricultural Research Institute, Kabanyolo (MUARIK). Soil and sewage solid waste were analysed for pH, organic matter, cation exchange capacity and heavy metals (copper, zinc, chromium and lead). Soil was treated with sewage solid waste at input rates of 0, 50, 100, and 150 g per pot (equivalent to 0, 2.5, 5.0 and 7.5 metric tones&middotha﹣1?respectively);and supplemented with phosphorus. The phosphorus was applied at rates of 0, 0.795, 1.591 and 2.385 g per pot (equivalent to 0, 25, 50 and 75 kg&middotha﹣1, respectively). Batch adsorption was used to study the sorption-desorption of heavy metals on the treated soil and the Langmuir and Freundlich models were used to analyse the data. Results: Adsorption and desorption isotherms fitted better to Freundlich equation than Langmuir model. Chromium was the most sorbed and retained metal;while lead was the least retained overall. The desorption process was virtually irreversible, considering the low amounts of the metals desorbed. Chromium fitted relatively better to both models than the copper, zinc and lead. All the four metals were less desorbed at high metal concentrations. Conclusion: The four metals would not be available at high metal concentrations especially when the application rate used is ≥ 5.0 tones&middotha﹣1 of the sewage solid waste. Thus, the metals would not be available for plant uptake and the chance to contaminate groundwater is very limited especially for chromium. 展开更多
关键词 Heavy Metals SEWAGE Solid Waste FERRALSOL sorption-desorption
在线阅读 下载PDF
Parametric study and effect of calcination and carbonation conditions on the CO_2 capture performance of lithium orthosilicate sorbent 被引量:1
8
作者 Nurul Azrin Zubbri Abdul Rahman Mohamed Maedeh Mohammadi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期631-641,共11页
The world is currently facing the challenges of global warming and climate change. Numerous efforts have been taken to mitigate CO2 emission, among which is the use of solid sorbents for CO2 capture. In this work, Li4... The world is currently facing the challenges of global warming and climate change. Numerous efforts have been taken to mitigate CO2 emission, among which is the use of solid sorbents for CO2 capture. In this work, Li4SiO4 was synthesised via a sol-gel method using lithium nitrate (LiNO3) and tetraethylorthosilicate (SiC8H20O4) as precursors. A parametric study of Li:Si molar ratio (1-5), calcination temperature (600-800℃) and calcination time (1-8 h) were conducted during sorbent synthesis. Calcination temperature (700-800℃) and carbonation temperature (500-700℃) during CO2 sorption activity were also varied to confirm the optimum operating temperature. Sorbent with the highest CO2 sorption capacity was finally introduced to several cyclic tests to study the durability of the sorbent through 10 cycles of CO2 sorption-desorption test. The results showed that the calcination temperature of 800℃ and carbonation temperature of 700℃ were the best operating temperatures, with CO2 sorption capacity of 7.95 mmol CO2·(g sorbent)^-1 (93% of the theoretical yield). Throughout the ten cyclic processes, CO2 sorption capacity of the sorbent had dropped approximately 16.2% from the first to the tenth cycle, which was a reasonable decline. Thus, it was concluded that Li4SiO4 is a potential CO2 solid sorbent for high temperature CO2 capture activity. 展开更多
关键词 CO2 capture Adsorption Carbon dioxide Lithium orthosilicate Sol-gel sorption-desorption
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部