Background: Somatic symptoms that are not attributable to organic pathology are common in general practice settings however, data in most parts of Africa including southern Nigeria are still scarce. The aim of our stu...Background: Somatic symptoms that are not attributable to organic pathology are common in general practice settings however, data in most parts of Africa including southern Nigeria are still scarce. The aim of our study was to examine such somatic symptoms reported by patients attending a primary care facility at a tertiary hospital in southern Nigeria as well as to motivate future research in this area. Method: The study was conducted at the General Out Patient Clinic (GOPC) of the University of Calabar Teaching Hospital (UCTH). It was a cross sectional study in which data were obtained from the case notes of 115 patients that presented in the clinic with somatic complaints which could not be attributed to organic pathology by their physicians. Results: While 46 of the patients were males, 69 were females. Their mean age was 37.7 (SD = 11.9). Internal heat, crawling sensation, body pains and palpitations were the most prevalent symptoms reported by the patients. When the symptoms were sorted into various groups, the “subjective abnormal bodily sensation” was the most prevalent and far outnumbered the “pseudo neurological symptoms”. Conclusion: A number of patients attending the GOPC of the UCTH seek consultations for medically unexplained somatic symptom. The most prevalent of these symptoms are internal heat and crawling sensations both of which are not stated in the criteria recognized by the International Classification of Diseases—version 10 (ICD-10) for the diagnosis of psychiatric disorders.展开更多
Objectives:Recently,how family-related factors influence employees’mental health has garnered increasing attention from researchers and practitioners.Drawing on the cognitive appraisal theory of stress,this study aim...Objectives:Recently,how family-related factors influence employees’mental health has garnered increasing attention from researchers and practitioners.Drawing on the cognitive appraisal theory of stress,this study aims to examine how and when family financial stress affects the employees’mental health and investigate the mediating role of performance stress and the moderating role of workplace competition.Methods:A cross-sectional survey was conducted with 23,520 Chinese employees by using a voluntary and anonymous structured questionnaire,which included family financial stress,performance stress,symptom checklist 90(SCL-90)scale,and workplace competition.The data were analyzed using SPSS 26.0 software and macro PROCESS.Results:The analysis of the mediating effect showed that performance stress mediated the relationship between family financial stress and psychological depression(b=0.064,SE=0.002,p<0.0001)and physical somatization(b=0.042,SE=0.002,p<0.0001),indicating spillover effects of stress from home to workplace.The moderating mediation analysis revealed that the crossover effects were amplified by workplace competition.For psychological depression,index of moderated mediation was:b=0.012,SE=0.001,p<0.001;For physical somatization,index of moderated mediation was:b=0.008,SE=0.001,p<0.001.Conclusion:Performance stress acts as a mediator in the link between family financial stress and mental health.Furthermore,the mediating effects was amplified by workplace competition.These findings suggest that workplace competition may serve to exacerbate the negative spillover effects from home to work through the mechanism of workrelated stress.Organizations should consider implementing supportive measures to mitigate family financial stress,such as providing financial counseling and fostering a collaborative work environment,to reduce the adverse effects of family financial stress on employees’mental health.展开更多
Litchi chinensis Sonn.is an important economic fruit tree in tropical and subtropical regions.Regrettably,the efficiency of plant regeneration via somatic embryogenesis in litchi is typically low due to the poor conve...Litchi chinensis Sonn.is an important economic fruit tree in tropical and subtropical regions.Regrettably,the efficiency of plant regeneration via somatic embryogenesis in litchi is typically low due to the poor conversion of embryos to plants.The purpose of this study was to establish a regeneration system via somatic embryogenesis from immature embryos explants in‘Heiye'cultivar of litchi.Our results demonstrated that MS medium supplemented with 2.0 mg L^(-1)2,4-D was optimal for callus induction.For somatic embryo(SE)induction,MS medium containing0.5 g L^(-1) activated charcoal(AC)was the most effective,while the use of zeatin(ZT)and thidiazuron(TDZ)resulted in abnormal somatic embryos.The rooting and regeneration rate of 2.15%and 17.5%,respectively,were achieved using MS medium supplemented with 0.5 g L^(-1) AC.Furthermore,transcriptome analysis was performed on embryogenic callus(EC),globular embryo(GE),and heart embryo(HE)to explore the molecular mechanisms of early somatic embryogenesis.2,587 common differentially expressed genes(DEGs)between EC_vs_GE and EC_vs_HE were identified,and the expression patterns of these common DEGs were separated into twelve major clusters.GO annotation and KEGG pathway analysis revealed that these common DEGs were implicated in plant hormone signal transduction,auxin-activated signaling pathway,and other biological processes.Additionally,differentially expressed transcription factors were identified,and the function of LcBBM2 which is specifically highly expressed during early somatic embryogenesis was verified.Overexpression of LcBBM2 in tomato promotes callus and shoot formation.Therefore,this study can provide a theoretical basis and technical support for genetic breeding improvement of litchi.展开更多
BACKGROUND With the growing scholarly and clinical fascination with somatic symptom dis-order(SSD),a bibliometric analysis is lacking.AIM To conduct a bibliometric analysis to investigate the current status and fronti...BACKGROUND With the growing scholarly and clinical fascination with somatic symptom dis-order(SSD),a bibliometric analysis is lacking.AIM To conduct a bibliometric analysis to investigate the current status and frontiers of SSD.METHODS The documents related to SSD are obtained from the web of science core collection database(WoSCC),and VOSviewer 1.6.16 from January 1,2000 to December 31,2023,and the WoSCC’s literature analysis wire were used to conduct the biblio-metric analysis.RESULTS A total of 567 documents related to SSD were included,and 2325 authors across 947 institutions from 57 countries/regions have contributed to SSD research,published in 277 journals.The most productive author,institution,country and journal were Löwe B,University of Hamburg,Germany,and Journal of Psycho-somatic Research respectively.The first high-cited document was published in the Journal of Psychosomatic Research in 2013 by Dimsdale JE and colleagues,which explored the rationale behind the SSD diagnosis introduction in diagnostic and statistical manual of mental disorders.CONCLUSION In conclusion,the main research hotspots and frontiers in the field of SSD are validity and reliability of the SSD criteria,functional impairment of SSD,and the treatment for SSD.More high-quality studies are needed to assess the diagnosis and treatment of SSD.展开更多
Background Cotton is an industrial crop renowned for its multifaceted applications in the textiles,pharmaceuticals,and biofuel industries.Plant regeneration through somatic embryogenesis(SE)plays a crucial role in the...Background Cotton is an industrial crop renowned for its multifaceted applications in the textiles,pharmaceuticals,and biofuel industries.Plant regeneration through somatic embryogenesis(SE)plays a crucial role in the genetic improvement of cotton.There is a strong correlation between SE and zygotic embryogenesis(ZE)in plants.Furthermore,the strategy of ectopic expression of cotton genes into the model plant Arabidopsis has been a widely accepted approach for functional study.Result Based on previous spatial transcriptomics of cotton somatic embryos,two genes,Gh HAT5 and Gh CRK29,were identified.They are highly expressed in cotyledon and epidermal cells of cotton cotyledonary embryos,respectively.In this study,Gh HAT5 and Gh CRK29 were ectopically expressed in Arabidopsis to investigate their functions.The result showed that in Arabidopsis zygotic embryos,the overexpression of Gh HAT5 promoted the development of apical embryonic upper-tier cells and embryonic cotyledon,while the overexpression of Gh CRK29 promoted the development of apical embryonic lower-tier cells and embryonic radicle.Given the similarities between somatic and zygotic embryogenesis,these findings suggest that Gh HAT5 and Gh CRK29 are involved in cotton SE.We also speculate that these genes may promote the expression of the Arabidopsis endogenous gene At SCR,which is crucial for embryonic development.Conclusion These results revealed that Gh HAT5 and Gh CRK29 regulate embryonic development and are essential in advancing our understanding of cotton SE and facilitating targeted genetic manipulation strategies to improve industrial crop traits and agricultural sustainability.展开更多
Litchi has great economic significance as a global fruit crop.However,the advancement of litchi functional genomics has encountered substantial obstacles due to its recalcitrance to stable transformation.Here,we prese...Litchi has great economic significance as a global fruit crop.However,the advancement of litchi functional genomics has encountered substantial obstacles due to its recalcitrance to stable transformation.Here,we present an efficacious Agrobacterium tumefaciens-mediated transformation system in somatic embryos of‘Heiye'litchi.This system was developed through the optimization of key variables encompassing explant selection,A.tumefaciens strain delineation,bacterium concentration,infection duration,and infection methodology.The subsequent validation of the transformation technique in litchi was realized through the ectopic expression of LcMYB1,resulting in the generation of transgenic calli.However,the differentiation of transgenic calli into somatic embryos encountered substantial challenges.To delineate the intricate molecular underpinnings of LcMYB1's inhibitory role in somatic embryo induction,a comprehensive transcriptome analysis was conducted that encompassed embryogenic calli(C),globular embryos(G),and transgenic calli(TC).A total of 1,166 common differentially expressed genes(DEGs)were identified between C-vs.-G and C-vs.-TC.Gene Ontology(GO)annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that these common DEGs were mostly related to plant hormone signal transduction pathways.Furthermore,RT-qPCR corroborated the pronounced down-regulation of numerous genes that are associated with somatic embryo induction within the transgenic calli.The development of this transformation system provides valuable support for functional genomics research in litchi.展开更多
The somatotopic representation of specific body parts is a well-established spatial organizational principle in the primary somatosensory and motor cortices.
Somatic cell nuclear transfer(SCNT)has been successfully employed across various mammalian species,yet cloned animals consistently exhibit low pregnancy rates,primarily due to placental abnormalities such as hyperplas...Somatic cell nuclear transfer(SCNT)has been successfully employed across various mammalian species,yet cloned animals consistently exhibit low pregnancy rates,primarily due to placental abnormalities such as hyperplasia and hypertrophy.This study investigated the involvement of the Hippo signaling pathway in aberrant placentaldevelopmentinSCNT-inducedbovine pregnancies.SCNT-derived cattle exhibited placental hypertrophy,including enlarged abdominal circumference and altered placental cotyledon morphology.RNA sequencing analysis indicated significant dysregulation of Hippo signaling pathway genes in SCNT placentas.Coexpression of YAP1 and CCND1 was observed in cloned blastocysts,placental tissues,and bovine placental mesenchymal stem cells(bPMSCs).Manipulation of YAP1expression demonstrated the capacity to regulate bPMSC proliferation.Experimental assays confirmed the direct binding of YAP1 to CCND1,which subsequently promoted CCND1 expression in bPMSCs.Furthermore,inhibition of CDK6,a downstream target of CCND1,attenuated SCNT bPMSC proliferation.This study identified YAP1 as a key regulatory component within the Hippo signaling pathway that drives placental hyperplasia in cloned cattle through up-regulation of CCND1-CDK6 expression,facilitating cell cycle progression.These findings offer potential avenues for enhancing cloning efficiency,with implications for evolutionary biology and the conservation of valuable germplasm resources.展开更多
Dear Editor,Sturge-Weber Syndrome(SWS)is a rare congenital neurocutaneous syndrome[1,2],with an estimated prevalence of 0.19 in 100,000 annually[3].It is a non-hereditary disease linked to a somatic mutation in the GN...Dear Editor,Sturge-Weber Syndrome(SWS)is a rare congenital neurocutaneous syndrome[1,2],with an estimated prevalence of 0.19 in 100,000 annually[3].It is a non-hereditary disease linked to a somatic mutation in the GNAQ,GNA11,or GNB2 gene[1],leading to vascular malformations in the cutaneous forehead,cerebral cortex,and eye[1,2].Notably,~70%of pediatric patients diagnosed with SWS exhibit brain calcification(BC)[4],though the prevalence of BC ranges from only 1%in young individuals to>20%in the senior population(>60 years old)[5].Similar to the elderly,BC in pediatric SWS patients is identified as vascular calcification[6,7],whereas BC in pediatric patients with tuberous sclerosis and tumors has been previously described as dystrophic calcification[6].展开更多
Psychosomatic disorders,characterized by significant contributions of psychosocial factors to the pathogenesis and progression of somatic organic diseases or functional impairments(e.g.,diabetes,essential hypertension...Psychosomatic disorders,characterized by significant contributions of psychosocial factors to the pathogenesis and progression of somatic organic diseases or functional impairments(e.g.,diabetes,essential hypertension,asthma,inflammatory bowel disease,and neurodermatitis),present unique diagnostic and therapeutic challenges[1].Traditional diagnostic frameworks,heavily reliant on clinicians’subjective judgment and limited by the qualitative nature of psychological assessments,often result in misdiagnosis or delayed detection.As a cornerstone of the Fourth Industrial Revolution,artificial intelligence(AI)has demonstrated transformative potential in medicine.In psychosomatic medicine,AI leverages advanced data analytics,machine learning,and natural language processing to decipher the intricate interplay between psychological and physiological mechanisms,offering novel tools for diagnosis,treatment,and prevention.However,its clinical integration raises critical ethical and operational concerns that warrant rigorous examination.展开更多
Human spinal cord organoids(hSCOs)offer a promising platform to study neurotrauma by addressing many limitations of traditional research models.These organoids provide access to human-specific physiological and geneti...Human spinal cord organoids(hSCOs)offer a promising platform to study neurotrauma by addressing many limitations of traditional research models.These organoids provide access to human-specific physiological and genetic mechanisms and can be derived from an individual's somatic cells(e.g.,blood or skin).This enables patient-specific paradigms for precision neurotrauma research,pa rticula rly relevant to the over 300,000 people in the United States living with chronic effects of spinal cord injury(SCI).展开更多
BACKGROUND Although chronic-phase chronic myeloid leukemia(CP-CML)is treatable and nearly curable in about 50%of patients,accelerated-phase chronic myeloid leukemia(AP-CML)shows concerning drug resistance,while blast ...BACKGROUND Although chronic-phase chronic myeloid leukemia(CP-CML)is treatable and nearly curable in about 50%of patients,accelerated-phase chronic myeloid leukemia(AP-CML)shows concerning drug resistance,while blast crisis chronic myeloid leukemia(BC-CML)is highly lethal.Advances in whole exome sequencing(WES)reveal pan-cancer mutations in BC-CML,supporting mutation-guided therapies beyond Breakpoint cluster region-Abelson.Artificial intelligence(AI)and machine learning(ML)enable genomic stratification and drug repurposing,addressing overlooked actionable mutations.AIM To stratify BC-CML into molecular subtypes using WES,ML,and AI for precision drug repurposing.METHODS Included 123 CML patients(111 CP-CML,5 AP-CML,7 BC-CML).WES identified pan-cancer mutations.Variants annotated via Ensembl Variant Effect Predictor and Catalogue of Somatic Mutations in Cancer(COSMIC).ML(principal component analysis,K-means)stratified BC-CML.COSMIC signatures and PanDrugs prioritized drugs.Analysis of variance/Kruskal-Wallis validated differences(P<0.05).RESULTS In this exploratory,hypothesis-generating study of BC-CML patients(n=7),we detected over 2500 somatic mutations.ML identified three BC-CML clusters:(1)Cluster 1[breast cancer susceptibility gene 2(BRCA2),TP53];(2)Cluster 2[isocitrate dehydrogenase(IDH)1/2,ten-eleven translocation 2];and(3)Cluster 3[Janus kinase(JAK)2,colony-stimulating factor 3 receptor],with distinct COSMIC signatures.Therapies:(1)Polyadenosinediphosphate-ribose polymerase inhibitors(olaparib);(2)IDH inhibitors(ivosidenib);and(3)JAK inhibitors(ruxolitinib).Mutational burden,signatures,and targets varied significantly across clusters,supporting precision stratification.CONCLUSION This WES-AI-ML framework provides mutation-guided therapies for BC-CML,enabling real-time stratification and Food and Drug Administration-approved drug repurposing.While this exploratory study is limited by its small sample size(n=7),it establishes a methodological framework for precision oncology stratification that warrants validation in larger,multi-center cohorts.展开更多
The mutation rate is a pivotal biological characteristic,intricately governed by natural selection and historically garnering considerable attention.Recent advances in high-throughput sequencing and analytical methodo...The mutation rate is a pivotal biological characteristic,intricately governed by natural selection and historically garnering considerable attention.Recent advances in high-throughput sequencing and analytical methodologies have profoundly transformed our understanding in this domain,ushering in an unprecedented era of mutation rate research.This paper aims to provide a comprehensive overview of the key concepts and methodologies frequently employed in the study of mutation rates.It examines various types of mutations,explores the evolutionary dynamics and associated theories,and synthesizes both classical and contemporary hypotheses.Furthermore,this review comprehensively explores recent advances in understanding germline and somatic mutations in animals and offers an overview of experimental methodologies,mutational patterns,molecular mechanisms,and driving forces influencing variations in mutation rates across species and tissues.Finally,it proposes several potential research directions and pressing questions for future investigations.展开更多
Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is imp...Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes.Hu sheep,a high-quality Chinese sheep breed,is known for its high fecundity and is often used as a model to study prolificacy traits.In the current study,animals were divided into two groups according to their delivery rates in three consecutive lambing seasons(namely,the high and low reproductive groups with≥3 lambs and one lamb per season,n=3,respectively).The ewes were slaughtered within 12 h of estrus,and unilateral ovarian tissues were collected and analyzed by 10×Genomics single-cell RNA sequencing.Results A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group.Noticeably,the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells.Furthermore,four granulosa cell subtypes were identified.GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells.Additionally,the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher.These genes inhibit necroptosis and ferroptosis of mural granulosa cells,which helps prevent follicular atresia.Conclusions This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep.The differences in gene expression profiles,particularly in the granulosa cells,suggest that these cells play a critical role in female prolificacy.The findings also highlight the importance of genes such as JPH1,LOC101112291,FTH1,and FTL in regulating granulosa cell function and follicular development.展开更多
Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previo...Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previous studies have been devoted to the in vitro propagation of Hippeastrum, but the SE and its regulatory networks are rarely reported. In this study, we established a direct SE method of Hippeastrum Bangkok Rose' using leaf bases as explants. MS supplemented with 1.00 mg·L^(-1)NAA +1.00 mg·L^(-1)KT + 0.25 mg·L^(-1)TDZ was the optimal medium for SE. Histological observations showed that the bipolar somatic embryo originated from the epidermal cell layer and underwent initiation,globular, scutellar and coleoptile stages. During SE, endogenous hormones of IAA, CTK, ABA, and SA were highly accumulated. Transcriptomic analysis revealed the genes encoding auxin biosynthesis/metabolic enzymes and efflux carriers were induced, while the auxin receptor of TIR1 and ARF transcriptional repressor of Aux/IAA were down-regulated and up-regulated, respectively, leading to suppression of auxin signaling. In contrast, cytokine signaling was promoted at the early stage of SE, as biosynthesis, transport, and signaling components were up-regulated.Various stress-related genes were up-regulated at the early or late stages of SE. Chromatin remodeling could also be dynamically regulated via distinct expression enzymes that control histone methylation and acetylation during SE. Moreover, key SE regulators, including WOXs and SERKs were highly expressed along with SE. Overall, the present study provides insights into the SE regulatory mechanisms of the Hippeastrum.展开更多
Background:Strong sex disparities have been observed among patients with bladder cancer(BCa).FGFR3 is one of the most frequently mutated genes in bladder cancer,and there are inconsistencies in its frequency in male a...Background:Strong sex disparities have been observed among patients with bladder cancer(BCa).FGFR3 is one of the most frequently mutated genes in bladder cancer,and there are inconsistencies in its frequency in male and female patients.Methods:Here,we conducted a meta-analysis comparing the FGFR3 somatic mutation frequency in men and women among 7351 patients with BCa from 18 cohorts.Results:We showed that female patients had a 1.32 times higher risk of having FGFR3 somatic mutations than males.This difference was attributed to mutations occurring at the 2 most frequently mutated sites,S249 and Y375.Additionally,nonsense mutations were more likely to be found in women,whereas indel/frameshift mutations were almost exclusively found in men;however,no difference was noted for missense mutations.Conclusions:A female sex bias in FGFR3 somatic mutationswas observed in BCa.Well-powered individual participant data analyses addressing the possible confounding effects of other factors(eg,age,ethnicity,smoking status,muscle invasiveness,and molecular subtype),as well as analyses integrating omics and functional investigations,are warranted to further validate and explain the mechanisms of the current findings.展开更多
Among plants,there is considerable variation in lifespan:annuals live less than one year,whereas perennials live for several years,with the longest-living perennial having survived 43,600 years.As proposed by the Disp...Among plants,there is considerable variation in lifespan:annuals live less than one year,whereas perennials live for several years,with the longest-living perennial having survived 43,600 years.As proposed by the Disposable Soma Theory,this lifespan variation among plants likely reflects differential investment of limited energy and nutrient resources,with perennials investing more energy and nutrients into biomolecular maintenance compared to annuals in order to ensure persistence over multiple seasons.Such differential investment may be particularly important during periods of exogenous stress,which are known to accelerate biomolecular damage.The present study evaluated this hypothesis using annual and perennial flax(Linum L.)subjected to two exogenous stressors—increased oxidative stress(i.e.,foliar H2O2spraying)and complete prolonged darkness.As chlorophyll has been shown to exhibit degradation in response to changes in environmental conditions,we utilized changes in chlorophyll levels during and after periods of exogenous stress to evaluate our hypotheses.We predicted that i)perennials would exhibit a slower rate of chlorophyll degradation during exposure to exogenous stressors compared to annuals,and ii)perennials would exhibit a faster rate of chlorophyll resynthesis following such exposure compared to annuals.Chlorophyll levels before,during,and after exposure to both exogenous stressors were measured in two separate trails,once using image colour analysis and once using spectrophotometry.While chlorophyll degradation rates in response to oxidative stress did not differ between annuals and perennials,contrary to our predictions,chlorophyll resynthesis rates following such exposure were significantly higher in perennials,as predicted.When plants were subjected to complete prolonged darkness,chlorophyll degradation rates were significantly lower in perennials than annuals,as predicted;however,when plants were subsequently reintroduced to natural photoperiod,chlorophyll resynthesis rates did not consistently differ between annuals and perennials,though they tended to be higher in the latter,as predicted.Overall,our study illuminates that evolutionary transitions between life history strategies in plants have been accompanied by physiological modifications to chlorophyll dynamics that permit perennial species to better maintain chlorophyll levels—and thus photosynthetic energy acquisition-in the face of exogenous stressors,which likely underlies their capacity to survive for multiple growing seasons.Future studies should explore whether other key biomolecules(e.g.,proteins,DNA)are also better maintained in perennial plants,especially in the face of exogenous stress.展开更多
Vegetable oil production from oil palm(Elaeis guineensis Jacq.)is an important industry due to the rising demand every year.The somatic embryogenesis culture can propagate oil palm duplicate as parent plant,which can ...Vegetable oil production from oil palm(Elaeis guineensis Jacq.)is an important industry due to the rising demand every year.The somatic embryogenesis culture can propagate oil palm duplicate as parent plant,which can be selected as breeding material to produce new planting germplasm with high production or disease resistance.This study aims to evaluate the genotypic effect of somatic embryogenesis,while immature leaflets were employed as explants.The culture used embryo induction medium based on Murashige and Skoog(MS)modifications that contained 5 mg/L Naphthalene Acetic acid(NAA)and 0.5 mg/L Benzyl Amino Purine(BAP).The genotypic effect was statistically significant in the percentage of callus induction,producing somatic embryos,and germination embryos.In this study,we successfully cloned thirteen oil palm genotypes(GE-02,GE-03,GE-06,GE-07,GE-09,GE-23,GE-24,GE-27,GE-28,GE-32,GE-33,GE-34,and GE-35),with the highest number of somatic embryos formed on GE-27 with a percentage of 70.1%.The cloning was successful in accelerating the propagation of oil palm for materials breeding programs to create new varieties with high production and disease resistance.It is necessary to observation the performance of these clones in the field in terms of mantle flower appearance.展开更多
Objective:Healthcare workers,as a high-stress professional group,face long-term high intensity workloads and complex medical environments,resulting in increasingly prominent mental health issues.In particular,the wide...Objective:Healthcare workers,as a high-stress professional group,face long-term high intensity workloads and complex medical environments,resulting in increasingly prominent mental health issues.In particular,the widespread presence of anxiety symptoms and somatic pain has become a major factor affecting both the quality of care and the career development of healthcare workers.This study aims to investigate the mediating and moderating roles of psychological resilience and sleep in the relationship between somatic pain and anxiety among healthcare workers.Methods:A cross-sectional questionnaire survey was conducted among 1661 healthcare workers.The instruments used included the Generalized Anxiety Disorder-7(GAD-7),item 3 from the Patient Health Questionnaire-9(PHQ-9),the 10-item Connor-Davidson Resilience Scale(CD-RISC-10)for psychological resilience,and the Visual Analogue Scale(VAS)for assessing anxiety,sleep disturbance,psychological resilience,and somatic pain.Results:The detection rate of anxiety symptoms among healthcare workers was 38.95%.Psychological resilience was significantly negatively correlated with anxiety symptoms(r=−0.451,P<0.01),sleep disturbance(r=−0.313,P<0.01),and somatic pain(r=−0.214,P<0.01).Moreover,psychological resilience partially mediated the relationship between somatic pain and anxiety(β=−0.103,P<0.01),and sleep quality moderated the latter part of the mediation model(“somatic pain-psychological resilience-anxiety”).Conclusion:Under high-intensity workloads,healthcare workers generally experience severe anxiety symptoms.Psychological resilience plays an important protective mediating role in their mental health,and sleep quality serves as a moderator in this relationship.Enhancing healthcare workers’psychological resilience and improving their sleep may promote both their physical and mental well-being.展开更多
Somatic cell count detection is the daily work of dairy farms to monitor the health of cows.The feasibility of applying near-infrared spectroscopy to somatic cell count detection was researched in this paper.Milk samp...Somatic cell count detection is the daily work of dairy farms to monitor the health of cows.The feasibility of applying near-infrared spectroscopy to somatic cell count detection was researched in this paper.Milk samples with different somatic cell counts were collected and preprocessing methods were studied.Variable selection algorithm based on hybrid strategy and modelling method based on ensemble learning were explored for somatic cell count detection.Detection model was used to diagnose subclinical mastitis and the results showed that near-infrared spectroscopy could be a tool to realize rapid detection of somatic cell count in milk.展开更多
文摘Background: Somatic symptoms that are not attributable to organic pathology are common in general practice settings however, data in most parts of Africa including southern Nigeria are still scarce. The aim of our study was to examine such somatic symptoms reported by patients attending a primary care facility at a tertiary hospital in southern Nigeria as well as to motivate future research in this area. Method: The study was conducted at the General Out Patient Clinic (GOPC) of the University of Calabar Teaching Hospital (UCTH). It was a cross sectional study in which data were obtained from the case notes of 115 patients that presented in the clinic with somatic complaints which could not be attributed to organic pathology by their physicians. Results: While 46 of the patients were males, 69 were females. Their mean age was 37.7 (SD = 11.9). Internal heat, crawling sensation, body pains and palpitations were the most prevalent symptoms reported by the patients. When the symptoms were sorted into various groups, the “subjective abnormal bodily sensation” was the most prevalent and far outnumbered the “pseudo neurological symptoms”. Conclusion: A number of patients attending the GOPC of the UCTH seek consultations for medically unexplained somatic symptom. The most prevalent of these symptoms are internal heat and crawling sensations both of which are not stated in the criteria recognized by the International Classification of Diseases—version 10 (ICD-10) for the diagnosis of psychiatric disorders.
基金upported by the National Natural Science Foundation of China(project no.72272117).
文摘Objectives:Recently,how family-related factors influence employees’mental health has garnered increasing attention from researchers and practitioners.Drawing on the cognitive appraisal theory of stress,this study aims to examine how and when family financial stress affects the employees’mental health and investigate the mediating role of performance stress and the moderating role of workplace competition.Methods:A cross-sectional survey was conducted with 23,520 Chinese employees by using a voluntary and anonymous structured questionnaire,which included family financial stress,performance stress,symptom checklist 90(SCL-90)scale,and workplace competition.The data were analyzed using SPSS 26.0 software and macro PROCESS.Results:The analysis of the mediating effect showed that performance stress mediated the relationship between family financial stress and psychological depression(b=0.064,SE=0.002,p<0.0001)and physical somatization(b=0.042,SE=0.002,p<0.0001),indicating spillover effects of stress from home to workplace.The moderating mediation analysis revealed that the crossover effects were amplified by workplace competition.For psychological depression,index of moderated mediation was:b=0.012,SE=0.001,p<0.001;For physical somatization,index of moderated mediation was:b=0.008,SE=0.001,p<0.001.Conclusion:Performance stress acts as a mediator in the link between family financial stress and mental health.Furthermore,the mediating effects was amplified by workplace competition.These findings suggest that workplace competition may serve to exacerbate the negative spillover effects from home to work through the mechanism of workrelated stress.Organizations should consider implementing supportive measures to mitigate family financial stress,such as providing financial counseling and fostering a collaborative work environment,to reduce the adverse effects of family financial stress on employees’mental health.
基金supported by the National Natural Science Fund of China(Grant Nos.31872066 and 32272663)the Science and Technology Planning Project of Guangzhou(Grant No.2023B01J2002)+1 种基金the Key Research and Development Program of Hainan(Grant No.ZDYF2023XDNY052)the Seed Industry Engineering Project of Ministry of Agriculture and Rural Affairs of Guangdong(Grant Nos.2022-NPY-00-004 and 2022-NBH-00-001)。
文摘Litchi chinensis Sonn.is an important economic fruit tree in tropical and subtropical regions.Regrettably,the efficiency of plant regeneration via somatic embryogenesis in litchi is typically low due to the poor conversion of embryos to plants.The purpose of this study was to establish a regeneration system via somatic embryogenesis from immature embryos explants in‘Heiye'cultivar of litchi.Our results demonstrated that MS medium supplemented with 2.0 mg L^(-1)2,4-D was optimal for callus induction.For somatic embryo(SE)induction,MS medium containing0.5 g L^(-1) activated charcoal(AC)was the most effective,while the use of zeatin(ZT)and thidiazuron(TDZ)resulted in abnormal somatic embryos.The rooting and regeneration rate of 2.15%and 17.5%,respectively,were achieved using MS medium supplemented with 0.5 g L^(-1) AC.Furthermore,transcriptome analysis was performed on embryogenic callus(EC),globular embryo(GE),and heart embryo(HE)to explore the molecular mechanisms of early somatic embryogenesis.2,587 common differentially expressed genes(DEGs)between EC_vs_GE and EC_vs_HE were identified,and the expression patterns of these common DEGs were separated into twelve major clusters.GO annotation and KEGG pathway analysis revealed that these common DEGs were implicated in plant hormone signal transduction,auxin-activated signaling pathway,and other biological processes.Additionally,differentially expressed transcription factors were identified,and the function of LcBBM2 which is specifically highly expressed during early somatic embryogenesis was verified.Overexpression of LcBBM2 in tomato promotes callus and shoot formation.Therefore,this study can provide a theoretical basis and technical support for genetic breeding improvement of litchi.
文摘BACKGROUND With the growing scholarly and clinical fascination with somatic symptom dis-order(SSD),a bibliometric analysis is lacking.AIM To conduct a bibliometric analysis to investigate the current status and frontiers of SSD.METHODS The documents related to SSD are obtained from the web of science core collection database(WoSCC),and VOSviewer 1.6.16 from January 1,2000 to December 31,2023,and the WoSCC’s literature analysis wire were used to conduct the biblio-metric analysis.RESULTS A total of 567 documents related to SSD were included,and 2325 authors across 947 institutions from 57 countries/regions have contributed to SSD research,published in 277 journals.The most productive author,institution,country and journal were Löwe B,University of Hamburg,Germany,and Journal of Psycho-somatic Research respectively.The first high-cited document was published in the Journal of Psychosomatic Research in 2013 by Dimsdale JE and colleagues,which explored the rationale behind the SSD diagnosis introduction in diagnostic and statistical manual of mental disorders.CONCLUSION In conclusion,the main research hotspots and frontiers in the field of SSD are validity and reliability of the SSD criteria,functional impairment of SSD,and the treatment for SSD.More high-quality studies are needed to assess the diagnosis and treatment of SSD.
基金supported by the National Key Research and Development Program of China(No.2022YFD1200300)。
文摘Background Cotton is an industrial crop renowned for its multifaceted applications in the textiles,pharmaceuticals,and biofuel industries.Plant regeneration through somatic embryogenesis(SE)plays a crucial role in the genetic improvement of cotton.There is a strong correlation between SE and zygotic embryogenesis(ZE)in plants.Furthermore,the strategy of ectopic expression of cotton genes into the model plant Arabidopsis has been a widely accepted approach for functional study.Result Based on previous spatial transcriptomics of cotton somatic embryos,two genes,Gh HAT5 and Gh CRK29,were identified.They are highly expressed in cotyledon and epidermal cells of cotton cotyledonary embryos,respectively.In this study,Gh HAT5 and Gh CRK29 were ectopically expressed in Arabidopsis to investigate their functions.The result showed that in Arabidopsis zygotic embryos,the overexpression of Gh HAT5 promoted the development of apical embryonic upper-tier cells and embryonic cotyledon,while the overexpression of Gh CRK29 promoted the development of apical embryonic lower-tier cells and embryonic radicle.Given the similarities between somatic and zygotic embryogenesis,these findings suggest that Gh HAT5 and Gh CRK29 are involved in cotton SE.We also speculate that these genes may promote the expression of the Arabidopsis endogenous gene At SCR,which is crucial for embryonic development.Conclusion These results revealed that Gh HAT5 and Gh CRK29 regulate embryonic development and are essential in advancing our understanding of cotton SE and facilitating targeted genetic manipulation strategies to improve industrial crop traits and agricultural sustainability.
基金supported by the National Natural Science Foundation of China(31872066 and 32272663)the Science and Technology Planning Project of Guangzhou,China(2023B01J2002)+2 种基金the Key Research and Development Program of Hainan,China(ZDYF2023XDNY052)the Seed Industry Engineering Project of Department of Agriculture and Rural Affairs of Guangdong,China(2022-NPY-00-004 and 2022-NBH00-001)the Litchi Industry Science and Technology Special Mission of Yunnan,China(202204BI090021)。
文摘Litchi has great economic significance as a global fruit crop.However,the advancement of litchi functional genomics has encountered substantial obstacles due to its recalcitrance to stable transformation.Here,we present an efficacious Agrobacterium tumefaciens-mediated transformation system in somatic embryos of‘Heiye'litchi.This system was developed through the optimization of key variables encompassing explant selection,A.tumefaciens strain delineation,bacterium concentration,infection duration,and infection methodology.The subsequent validation of the transformation technique in litchi was realized through the ectopic expression of LcMYB1,resulting in the generation of transgenic calli.However,the differentiation of transgenic calli into somatic embryos encountered substantial challenges.To delineate the intricate molecular underpinnings of LcMYB1's inhibitory role in somatic embryo induction,a comprehensive transcriptome analysis was conducted that encompassed embryogenic calli(C),globular embryos(G),and transgenic calli(TC).A total of 1,166 common differentially expressed genes(DEGs)were identified between C-vs.-G and C-vs.-TC.Gene Ontology(GO)annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that these common DEGs were mostly related to plant hormone signal transduction pathways.Furthermore,RT-qPCR corroborated the pronounced down-regulation of numerous genes that are associated with somatic embryo induction within the transgenic calli.The development of this transformation system provides valuable support for functional genomics research in litchi.
文摘The somatotopic representation of specific body parts is a well-established spatial organizational principle in the primary somatosensory and motor cortices.
基金supported by the National Natural Science Foundation of China (32060755)Natural Science Foundation of Inner Mongolia (2024MS03001)+7 种基金Inner Mongolia Autonomous Region Open Competition Projects (2022JBGS0018)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT23090)Inner Mongolia Autonomous Region Science and Technology Leading Team (2022LJRC0006)Inner Mongolia Autonomous Region Science and Technology Major Project (2021ZD0009)Major Agricultural Science and Technology Project of the Ministry of Agriculture and Rural Affairs (NK2022130203)Central Government Guides Local Science and Technology Development Funds (2022ZY0212)Inner Mongolia Autonomous Region High-level Talent Support ProgramInner Mongolia University Chief Scientist Program。
文摘Somatic cell nuclear transfer(SCNT)has been successfully employed across various mammalian species,yet cloned animals consistently exhibit low pregnancy rates,primarily due to placental abnormalities such as hyperplasia and hypertrophy.This study investigated the involvement of the Hippo signaling pathway in aberrant placentaldevelopmentinSCNT-inducedbovine pregnancies.SCNT-derived cattle exhibited placental hypertrophy,including enlarged abdominal circumference and altered placental cotyledon morphology.RNA sequencing analysis indicated significant dysregulation of Hippo signaling pathway genes in SCNT placentas.Coexpression of YAP1 and CCND1 was observed in cloned blastocysts,placental tissues,and bovine placental mesenchymal stem cells(bPMSCs).Manipulation of YAP1expression demonstrated the capacity to regulate bPMSC proliferation.Experimental assays confirmed the direct binding of YAP1 to CCND1,which subsequently promoted CCND1 expression in bPMSCs.Furthermore,inhibition of CDK6,a downstream target of CCND1,attenuated SCNT bPMSC proliferation.This study identified YAP1 as a key regulatory component within the Hippo signaling pathway that drives placental hyperplasia in cloned cattle through up-regulation of CCND1-CDK6 expression,facilitating cell cycle progression.These findings offer potential avenues for enhancing cloning efficiency,with implications for evolutionary biology and the conservation of valuable germplasm resources.
基金supported by the Natural Science Foundation of Guangdong Province(2022A1515010297)the National Natural Science Foundation of China(32100765)+1 种基金the Xiamen Medical Health Science and Technology Project(3502Z20194098)the Shenzhen-Hong Kong-Macao Science and Technology Innovation Project(SGDX2020110309280100).
文摘Dear Editor,Sturge-Weber Syndrome(SWS)is a rare congenital neurocutaneous syndrome[1,2],with an estimated prevalence of 0.19 in 100,000 annually[3].It is a non-hereditary disease linked to a somatic mutation in the GNAQ,GNA11,or GNB2 gene[1],leading to vascular malformations in the cutaneous forehead,cerebral cortex,and eye[1,2].Notably,~70%of pediatric patients diagnosed with SWS exhibit brain calcification(BC)[4],though the prevalence of BC ranges from only 1%in young individuals to>20%in the senior population(>60 years old)[5].Similar to the elderly,BC in pediatric SWS patients is identified as vascular calcification[6,7],whereas BC in pediatric patients with tuberous sclerosis and tumors has been previously described as dystrophic calcification[6].
文摘Psychosomatic disorders,characterized by significant contributions of psychosocial factors to the pathogenesis and progression of somatic organic diseases or functional impairments(e.g.,diabetes,essential hypertension,asthma,inflammatory bowel disease,and neurodermatitis),present unique diagnostic and therapeutic challenges[1].Traditional diagnostic frameworks,heavily reliant on clinicians’subjective judgment and limited by the qualitative nature of psychological assessments,often result in misdiagnosis or delayed detection.As a cornerstone of the Fourth Industrial Revolution,artificial intelligence(AI)has demonstrated transformative potential in medicine.In psychosomatic medicine,AI leverages advanced data analytics,machine learning,and natural language processing to decipher the intricate interplay between psychological and physiological mechanisms,offering novel tools for diagnosis,treatment,and prevention.However,its clinical integration raises critical ethical and operational concerns that warrant rigorous examination.
基金supported by the Belle Carnell Regenerative Neurorehabilitation Fundthe National Institutes of Health(R01NS113935 to CKF)。
文摘Human spinal cord organoids(hSCOs)offer a promising platform to study neurotrauma by addressing many limitations of traditional research models.These organoids provide access to human-specific physiological and genetic mechanisms and can be derived from an individual's somatic cells(e.g.,blood or skin).This enables patient-specific paradigms for precision neurotrauma research,pa rticula rly relevant to the over 300,000 people in the United States living with chronic effects of spinal cord injury(SCI).
文摘BACKGROUND Although chronic-phase chronic myeloid leukemia(CP-CML)is treatable and nearly curable in about 50%of patients,accelerated-phase chronic myeloid leukemia(AP-CML)shows concerning drug resistance,while blast crisis chronic myeloid leukemia(BC-CML)is highly lethal.Advances in whole exome sequencing(WES)reveal pan-cancer mutations in BC-CML,supporting mutation-guided therapies beyond Breakpoint cluster region-Abelson.Artificial intelligence(AI)and machine learning(ML)enable genomic stratification and drug repurposing,addressing overlooked actionable mutations.AIM To stratify BC-CML into molecular subtypes using WES,ML,and AI for precision drug repurposing.METHODS Included 123 CML patients(111 CP-CML,5 AP-CML,7 BC-CML).WES identified pan-cancer mutations.Variants annotated via Ensembl Variant Effect Predictor and Catalogue of Somatic Mutations in Cancer(COSMIC).ML(principal component analysis,K-means)stratified BC-CML.COSMIC signatures and PanDrugs prioritized drugs.Analysis of variance/Kruskal-Wallis validated differences(P<0.05).RESULTS In this exploratory,hypothesis-generating study of BC-CML patients(n=7),we detected over 2500 somatic mutations.ML identified three BC-CML clusters:(1)Cluster 1[breast cancer susceptibility gene 2(BRCA2),TP53];(2)Cluster 2[isocitrate dehydrogenase(IDH)1/2,ten-eleven translocation 2];and(3)Cluster 3[Janus kinase(JAK)2,colony-stimulating factor 3 receptor],with distinct COSMIC signatures.Therapies:(1)Polyadenosinediphosphate-ribose polymerase inhibitors(olaparib);(2)IDH inhibitors(ivosidenib);and(3)JAK inhibitors(ruxolitinib).Mutational burden,signatures,and targets varied significantly across clusters,supporting precision stratification.CONCLUSION This WES-AI-ML framework provides mutation-guided therapies for BC-CML,enabling real-time stratification and Food and Drug Administration-approved drug repurposing.While this exploratory study is limited by its small sample size(n=7),it establishes a methodological framework for precision oncology stratification that warrants validation in larger,multi-center cohorts.
文摘The mutation rate is a pivotal biological characteristic,intricately governed by natural selection and historically garnering considerable attention.Recent advances in high-throughput sequencing and analytical methodologies have profoundly transformed our understanding in this domain,ushering in an unprecedented era of mutation rate research.This paper aims to provide a comprehensive overview of the key concepts and methodologies frequently employed in the study of mutation rates.It examines various types of mutations,explores the evolutionary dynamics and associated theories,and synthesizes both classical and contemporary hypotheses.Furthermore,this review comprehensively explores recent advances in understanding germline and somatic mutations in animals and offers an overview of experimental methodologies,mutational patterns,molecular mechanisms,and driving forces influencing variations in mutation rates across species and tissues.Finally,it proposes several potential research directions and pressing questions for future investigations.
基金supported by the mutton sheep industry technology system construction project of Shaanxi Province(NYKJ-2021-YL(XN)43).
文摘Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes.Hu sheep,a high-quality Chinese sheep breed,is known for its high fecundity and is often used as a model to study prolificacy traits.In the current study,animals were divided into two groups according to their delivery rates in three consecutive lambing seasons(namely,the high and low reproductive groups with≥3 lambs and one lamb per season,n=3,respectively).The ewes were slaughtered within 12 h of estrus,and unilateral ovarian tissues were collected and analyzed by 10×Genomics single-cell RNA sequencing.Results A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group.Noticeably,the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells.Furthermore,four granulosa cell subtypes were identified.GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells.Additionally,the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher.These genes inhibit necroptosis and ferroptosis of mural granulosa cells,which helps prevent follicular atresia.Conclusions This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep.The differences in gene expression profiles,particularly in the granulosa cells,suggest that these cells play a critical role in female prolificacy.The findings also highlight the importance of genes such as JPH1,LOC101112291,FTH1,and FTL in regulating granulosa cell function and follicular development.
基金funded by Guangdong Basic and Applied Basic Research Foundation (Grant No.2023A1515010237)the 2021 Dongguan Provincial Rural Revitalization Program (Grant No.20211800400022)+2 种基金the Guangdong Key Technology Research and Development Program (Grant Nos.2020B020220005,2022B1111040003)the Guangdong Modern Agricultural Industry Technology System Program (Grant No.2023KJ121)the South China Botanical Garden,the Chinese Academy of Sciences (Grant No.QNXM-02)。
文摘Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previous studies have been devoted to the in vitro propagation of Hippeastrum, but the SE and its regulatory networks are rarely reported. In this study, we established a direct SE method of Hippeastrum Bangkok Rose' using leaf bases as explants. MS supplemented with 1.00 mg·L^(-1)NAA +1.00 mg·L^(-1)KT + 0.25 mg·L^(-1)TDZ was the optimal medium for SE. Histological observations showed that the bipolar somatic embryo originated from the epidermal cell layer and underwent initiation,globular, scutellar and coleoptile stages. During SE, endogenous hormones of IAA, CTK, ABA, and SA were highly accumulated. Transcriptomic analysis revealed the genes encoding auxin biosynthesis/metabolic enzymes and efflux carriers were induced, while the auxin receptor of TIR1 and ARF transcriptional repressor of Aux/IAA were down-regulated and up-regulated, respectively, leading to suppression of auxin signaling. In contrast, cytokine signaling was promoted at the early stage of SE, as biosynthesis, transport, and signaling components were up-regulated.Various stress-related genes were up-regulated at the early or late stages of SE. Chromatin remodeling could also be dynamically regulated via distinct expression enzymes that control histone methylation and acetylation during SE. Moreover, key SE regulators, including WOXs and SERKs were highly expressed along with SE. Overall, the present study provides insights into the SE regulatory mechanisms of the Hippeastrum.
基金Supported by the National Natural Science Foundation of China(no.82303057)Natural Science Foundation of Hubei Province of China(no.2023AFB521)“Chutian Scholars Program”of Hubei Province of China.
文摘Background:Strong sex disparities have been observed among patients with bladder cancer(BCa).FGFR3 is one of the most frequently mutated genes in bladder cancer,and there are inconsistencies in its frequency in male and female patients.Methods:Here,we conducted a meta-analysis comparing the FGFR3 somatic mutation frequency in men and women among 7351 patients with BCa from 18 cohorts.Results:We showed that female patients had a 1.32 times higher risk of having FGFR3 somatic mutations than males.This difference was attributed to mutations occurring at the 2 most frequently mutated sites,S249 and Y375.Additionally,nonsense mutations were more likely to be found in women,whereas indel/frameshift mutations were almost exclusively found in men;however,no difference was noted for missense mutations.Conclusions:A female sex bias in FGFR3 somatic mutationswas observed in BCa.Well-powered individual participant data analyses addressing the possible confounding effects of other factors(eg,age,ethnicity,smoking status,muscle invasiveness,and molecular subtype),as well as analyses integrating omics and functional investigations,are warranted to further validate and explain the mechanisms of the current findings.
基金GAM is supported by a Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grant。
文摘Among plants,there is considerable variation in lifespan:annuals live less than one year,whereas perennials live for several years,with the longest-living perennial having survived 43,600 years.As proposed by the Disposable Soma Theory,this lifespan variation among plants likely reflects differential investment of limited energy and nutrient resources,with perennials investing more energy and nutrients into biomolecular maintenance compared to annuals in order to ensure persistence over multiple seasons.Such differential investment may be particularly important during periods of exogenous stress,which are known to accelerate biomolecular damage.The present study evaluated this hypothesis using annual and perennial flax(Linum L.)subjected to two exogenous stressors—increased oxidative stress(i.e.,foliar H2O2spraying)and complete prolonged darkness.As chlorophyll has been shown to exhibit degradation in response to changes in environmental conditions,we utilized changes in chlorophyll levels during and after periods of exogenous stress to evaluate our hypotheses.We predicted that i)perennials would exhibit a slower rate of chlorophyll degradation during exposure to exogenous stressors compared to annuals,and ii)perennials would exhibit a faster rate of chlorophyll resynthesis following such exposure compared to annuals.Chlorophyll levels before,during,and after exposure to both exogenous stressors were measured in two separate trails,once using image colour analysis and once using spectrophotometry.While chlorophyll degradation rates in response to oxidative stress did not differ between annuals and perennials,contrary to our predictions,chlorophyll resynthesis rates following such exposure were significantly higher in perennials,as predicted.When plants were subjected to complete prolonged darkness,chlorophyll degradation rates were significantly lower in perennials than annuals,as predicted;however,when plants were subsequently reintroduced to natural photoperiod,chlorophyll resynthesis rates did not consistently differ between annuals and perennials,though they tended to be higher in the latter,as predicted.Overall,our study illuminates that evolutionary transitions between life history strategies in plants have been accompanied by physiological modifications to chlorophyll dynamics that permit perennial species to better maintain chlorophyll levels—and thus photosynthetic energy acquisition-in the face of exogenous stressors,which likely underlies their capacity to survive for multiple growing seasons.Future studies should explore whether other key biomolecules(e.g.,proteins,DNA)are also better maintained in perennial plants,especially in the face of exogenous stress.
基金funded by the Penelitian Disertasi Doktor(PDD)program 2022 No.51/UN5.2.3.1/PPM/KP DRTPM/TI/2022 of the Directorate General of Research,TechnologyCommunity Service,Ministry of Education,Culture,Research,and Technology of the Republic of Indonesia.
文摘Vegetable oil production from oil palm(Elaeis guineensis Jacq.)is an important industry due to the rising demand every year.The somatic embryogenesis culture can propagate oil palm duplicate as parent plant,which can be selected as breeding material to produce new planting germplasm with high production or disease resistance.This study aims to evaluate the genotypic effect of somatic embryogenesis,while immature leaflets were employed as explants.The culture used embryo induction medium based on Murashige and Skoog(MS)modifications that contained 5 mg/L Naphthalene Acetic acid(NAA)and 0.5 mg/L Benzyl Amino Purine(BAP).The genotypic effect was statistically significant in the percentage of callus induction,producing somatic embryos,and germination embryos.In this study,we successfully cloned thirteen oil palm genotypes(GE-02,GE-03,GE-06,GE-07,GE-09,GE-23,GE-24,GE-27,GE-28,GE-32,GE-33,GE-34,and GE-35),with the highest number of somatic embryos formed on GE-27 with a percentage of 70.1%.The cloning was successful in accelerating the propagation of oil palm for materials breeding programs to create new varieties with high production and disease resistance.It is necessary to observation the performance of these clones in the field in terms of mantle flower appearance.
基金supported by the Natural Science Foundation of Hunan Province,China(2023JJ60076)。
文摘Objective:Healthcare workers,as a high-stress professional group,face long-term high intensity workloads and complex medical environments,resulting in increasingly prominent mental health issues.In particular,the widespread presence of anxiety symptoms and somatic pain has become a major factor affecting both the quality of care and the career development of healthcare workers.This study aims to investigate the mediating and moderating roles of psychological resilience and sleep in the relationship between somatic pain and anxiety among healthcare workers.Methods:A cross-sectional questionnaire survey was conducted among 1661 healthcare workers.The instruments used included the Generalized Anxiety Disorder-7(GAD-7),item 3 from the Patient Health Questionnaire-9(PHQ-9),the 10-item Connor-Davidson Resilience Scale(CD-RISC-10)for psychological resilience,and the Visual Analogue Scale(VAS)for assessing anxiety,sleep disturbance,psychological resilience,and somatic pain.Results:The detection rate of anxiety symptoms among healthcare workers was 38.95%.Psychological resilience was significantly negatively correlated with anxiety symptoms(r=−0.451,P<0.01),sleep disturbance(r=−0.313,P<0.01),and somatic pain(r=−0.214,P<0.01).Moreover,psychological resilience partially mediated the relationship between somatic pain and anxiety(β=−0.103,P<0.01),and sleep quality moderated the latter part of the mediation model(“somatic pain-psychological resilience-anxiety”).Conclusion:Under high-intensity workloads,healthcare workers generally experience severe anxiety symptoms.Psychological resilience plays an important protective mediating role in their mental health,and sleep quality serves as a moderator in this relationship.Enhancing healthcare workers’psychological resilience and improving their sleep may promote both their physical and mental well-being.
基金Supported by the Natural Science Foundation of Heilongjiang Province of China(LH2023C016)the Key Research and Development Program of Heilongjiang Province of China(2022ZX01A24)the National Modern Agricultural Industry Technology System(CARS36)。
文摘Somatic cell count detection is the daily work of dairy farms to monitor the health of cows.The feasibility of applying near-infrared spectroscopy to somatic cell count detection was researched in this paper.Milk samples with different somatic cell counts were collected and preprocessing methods were studied.Variable selection algorithm based on hybrid strategy and modelling method based on ensemble learning were explored for somatic cell count detection.Detection model was used to diagnose subclinical mastitis and the results showed that near-infrared spectroscopy could be a tool to realize rapid detection of somatic cell count in milk.