In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar perce...In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Strategies for achieving high-energy-density lithium-ion batteries include using high-capacity materials such as high-nickel NCM,increasing the active material content in the electrode by utilizing high-conductivity c...Strategies for achieving high-energy-density lithium-ion batteries include using high-capacity materials such as high-nickel NCM,increasing the active material content in the electrode by utilizing high-conductivity carbon nanotubes(CNT)conductive materials,and electrode thickening.However,these methods are still limited due to the limitation in the capacity of high-nickel NCM,aggregation of CNT conductive materials,and nonuniform material distribution of thick-film electrodes,which ultimately damage the mechanical and electrical integrity of the electrode,leading to a decrease in electrochemical performance.Here,we present an integrated binder-CNT composite dispersion solution to realize a high-solids-content(>77 wt%)slurry for high-mass-loading electrodes and to mitigate the migration of binder and conductive additives.Indeed,the approach reduces solvent usage by approximately 30%and ensures uniform conductive additive-binder domain distribution during electrode manufacturing,resulting in improved coating quality and adhesive strength for high-mass-loading electrodes(>12 mAh cm^(−2)).In terms of various electrode properties,the presented electrode showed low resistance and excellent electrochemical properties despite the low CNT contents of 0.6 wt%compared to the pristine-applied electrode with 0.85 wt%CNT contents.Moreover,our strategy enables faster drying,which increases the coating speed,thereby offering potential energy savings and supporting carbon neutrality in wet-based electrode manufacturing processes.展开更多
Anammox bacteria in constructed wetlands(CWs)play pivotal role in sustainable nitrogen transformation,yet existing studies lack comprehensive analysis of environmental gradients and microbial interactions,both key fac...Anammox bacteria in constructed wetlands(CWs)play pivotal role in sustainable nitrogen transformation,yet existing studies lack comprehensive analysis of environmental gradients and microbial interactions,both key factors in anammox bacteria enrichment.This study investigated the mechanisms driving anammox bacteria enrichment in lab-scale simulated CWs treating high-nitrogen wastewater,focusing on bacterial community re-sponses across wetland layers with various strategies,including continuous up-flow influent,nitrogen loading increase,effluent recirculation,intermittent influent,and anammox bacteria inoculation.Results showed that total relative and absolute abundances of anammox bacteria ranged from 0.77%to 12.50%and from 0.13 to 6.46×10^(7) copies/g,respectively.Dissolved oxygen and pH had significant positive correlations with the absolute abundance of anammox bacteria,while organic matter and nitrate negatively impacted their relative abundance.Permutational multivariate analysis of variance indicated that spatial heterogeneity explained more variation in anammox bacteria abundance(43.44%)compared to operational strategies(8.58%).In terms of microbial interactions,60 dominant species exhibited potential correlations with anammox bacteria,comprising 170 interactions(105 positive and 65 negative),which suggested that anammox bacteria generally foster cooperative relationships with dominant bacteria.Notably,significant interspecies interactions were observed between Candidatus Kuenenia(dominant anammox bacteria in CWs)and species within the genera Chitinivibrio-nia and Anaerolineaceae,suggesting that microbial interactions primarily manifest as indirect facilitative effects rather than direct mutualistic relationships.Given that the Normalized Stochasticity Ratio in CWs were<50%,this study inferred that environmental gradients have greater influence on anammox bacteria than microbial interactions.展开更多
Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development...Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development of mechanization,wide-row spacing substrate cultivation became an optimize mode of the greenhouse cucumber cultivation,aligning with the trend of intelligent agriculture.To determine the optimal nutrient solution supply amount(NS)and supply frequency(SF)for promoting the integrated growth of cucumber under wide-row spacing substrate cultivation,we explored the effects of substrate supply amount(SS),NS,and SF on cucumber yield,quality,and element utilization efficiency.A five-level quadratic orthogonal rotation combination design with three experimental factors(NS,SF,and SS)was implemented for 23 coupling treatments over three growing seasons,including spring(2022S and 2023S)and autumn(2022A).The technique for order preference by similarity to ideal solution(TOPSIS)combining weights based on game theory was applied to construct cucumber comprehensive growth evaluation model.Single and two experimental factors analyses revealed significant effects of single factors and the coupling of NS-SS,NS-SF and SS-SF on the integrated growth of cucumber for all three growing seasons.For the NS-SF-SS combination,the optimal parameters for comprehensive cucumber growth were determined as follows:levels of^(-1).68 for NS,-0.7 for SF,and^(-1).682 for SS in 2022A;-0.43 for NS,-0.06 for SF,and 0.34 for SS in 2022S;0.3 for NS,-0.02 for SF,and 0.04 for SS in 2023S.Furthermore,for SS ranges of 2.00-3.01,3.01-4.50,4.50-5.99,5.99-7.00(L·plant^(-1)),the corresponding NS and SF intervals maximizing cucumber integrated growth in spring were:0.28-0.30(L·plant^(-1))and 6(times·d^(-1)),0.26-0.30(L·plant^(-1))and 6(times·d^(-1)),0.25-0.30(L·plant^(-1))and 6(times·d^(-1)),0.23-0.30(L·plant^(-1))and 6(times·d^(-1)),respectively.With the same SS,the corresponding NS and SF intervals that maximized cucumber integrated growth in autumn were:0.10(L·plant^(-1))and 8(times·d^(-1)),0.18(L·plant^(-1))and 7(times·d^(-1)),0.30(L·plant^(-1))and 6(times·d^(-1)),0.49(L·plant^(-1))and 5(times·d^(-1)),respectively.The results provide a theoretical basis for solution management,and further in-depth research on cucumber cultivation.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD....BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.展开更多
To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparat...To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution.展开更多
为了客观评价地下空间开发地质适宜性并为评价工作提供一种新思路和参考,提出了一种基于三角模糊数的模糊层次分析法(fuzzy analytic hierarchy process based on triangular fuzzy numbers,FAHP)和优劣解距离法(technique for order pr...为了客观评价地下空间开发地质适宜性并为评价工作提供一种新思路和参考,提出了一种基于三角模糊数的模糊层次分析法(fuzzy analytic hierarchy process based on triangular fuzzy numbers,FAHP)和优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)相结合的评价方法。通过地质调查研究构建基于土体工程地质性质、水文地质条件、不良地质作用、地形地貌等影响因素为主的层次分析关系模型。基于专家判别利用FAHP计算各评价因素的权重,以各评价指标层的分级临界值作为典型评价样本,利用TOPSIS法对适宜性等级进行非等分划分,基于区间值优化的TOPSIS法建立最终评价模型,通过ArcGIS的空间分析功能等确定每个评价单元适宜性等级。该方法与传统方法相比一定程度上减少了评价过程中专家评判的过多主观影响,评价过程更倾向于定量化,结果更为客观。利用该方法对无锡市区浅层地下空间开发地质适宜性进行评价,评价结果与实际工程经验相符,证明了该方法的有效性,因此该方法对地下空间开发适宜性评价工作具有一定借鉴意义。展开更多
Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method mor...Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.展开更多
Rare-earth(RE) magnesium alloys have attracted lots of attention due to their excellent mechanical properties.In this work,the microstructure and mechanical properties of as-extruded 8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium a...Rare-earth(RE) magnesium alloys have attracted lots of attention due to their excellent mechanical properties.In this work,the microstructure and mechanical properties of as-extruded 8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium alloy under different solution treatment were examined with the optical microscope(OM),scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM),electron back-scattered diffraction(EBSD) and Instron testing machine.The results show that the ES12alloy(solution treatment for 12 h at 520℃) has the highest ultimate tensile strength(UTS) of 390 MPa with a fracture elongation of 24.5% at the co st of a minor drop in yielding strength(YS) compared to the asextruded alloy.During solution treatment,the block-shaped long period stacking ordered(LPSO) in asextruded alloy evolves into plate-shaped LPSO,which disperses at grain boundaries(GBs),and lamellar LPSO,which distributes in grains.The coexistence of plate-shaped and lamellar LPSO,which impedes the dislocations movement,and the activated dislocations are regarded as the primary reasons for mechanical properties improvement.Furthermore,the(11-21) <1-100> texture in as-extruded alloy transforms into the(11-20) <0001> texture in ES12 alloy.The average grain size increases from 3.45 μm in as-extruded alloy to 18.70 μm in ES12 alloy.The Schmid factors of {0001} <11-20>,{10-10} <11-20>,{10-11} <11-20>,and {11-22} <11-23> increase,which indicate that slip systems are more easily activated in plastic deformation.The dynamic recrystallization(DRX) grains fraction increase to 92.8% for ES12 alloy due to the particle-stimulated nucleation(PSN) mechanism triggered by block-shaped and plate-shaped LPSO.The freshly DRXed grains further weaken the texture,and reduce the dislocation density.All of these factors increase elongation of RE magnesium alloy.展开更多
This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V...This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance.展开更多
Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has...Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.展开更多
The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs,causing detrimental ecological effects,which have attracted attention towards effecti...The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs,causing detrimental ecological effects,which have attracted attention towards effective and sustainable methods for antibiotics and antitumor drug degradation.Here,the hybrid nanomaterial(g-C_(3)N_(4)@Fe/Pd)was synthesized and used to remove a kind of both an antibiotic and antitumor drug named mitoxantrone(MTX)with 92.0%removal efficiency,and the MTX removal capacity is 450 mg/g.After exposing to the hybrid material the MTX aqueous solution changed color from dark blue to lighter progressively,and LC-UV results of residual solutions showthat a newpeak at 3.0min(MTX:13.2min)after removal by g-C_(3)N_(4)@Fe/Pd appears,with the simultaneous detection of intermediate products indicating that g-C_(3)N_(4)@Fe/Pd indeed degrades MTX.Detailed mass spectrometric analysis suggests that the nuclear mass ratio decreased from 445.2(M+1H)to 126.0(M+1H),169.1(M+1H),239.2(M+1H),267.3(M+1H),285.2(M+1H),371.4(M+1H)and 415.2(M+1H),and the maximum proportion(5.63%)substance of all degradation products(126.0(M+1H))is 40-100 times less toxic than MTX.A mechanism for the removal and degradation of mitoxantrone was proposed.Besides,actual water experiments confirmed that the maximum removal capacity of MTX by g-C_(3)N_(4)@Fe/Pd is up to 492.4 mg/g(0.02 g/L,10 ppm).展开更多
Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the t...Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.展开更多
The performance of Mg alloys is significantly influenced by the concentrations and solid solution behavior of the alloying elements.In this work,the solid solution behavior of 20 alloying elements in 190 ternary Mg al...The performance of Mg alloys is significantly influenced by the concentrations and solid solution behavior of the alloying elements.In this work,the solid solution behavior of 20 alloying elements in 190 ternary Mg alloy systems at 500℃are systematically investigated.The solid solution behavior of a set of two different alloying elements in Mg alloy systems are suggested to be classified into three categories:inclusivity,exclusivity and proportionality.Inclusivity classification indicates that the two alloying elements are inclusive inα-Mg,increasing the joint solubility of both elements.Exclusivity classification suggests that the two alloying elements have a low joint solid solubility inα-Mg,since they prefer to form stable second phases.For the proportionality classification,the solubility curve of the ternary Mg alloy systems is a straight line connecting the solubility points of the two sub-binary systems.The proposed classification theory was validated by key experiments and the calculation of formation energies.The interaction effects between alloying elements and the preference of formation of second phases are the main factors determining the solid solution behavior classifications.Based on the observed solid solution features of multi-component Mg alloys,principles for alloy design of different types of high-performance Mg alloys were proposed in this work.展开更多
Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract...Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.展开更多
Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude ...Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude M_(L)≥1.5 in the Changning shale gas field from January 2016 to May 2017 by fitting three-component waveforms.We then constrain the directions of the maximum horizontal stress(σ_(H_(max)))for four dense earthquake clusters using the stress tensor inversion method.The stress drops of 121 earthquakes with M_(L)≥1.5 are calculated using the spectral ratio method.We examine the spatiotemporal heterogeneity of stress field,and discuss the cause of non-double-couple(non-DC)components in seismicity clusters.Following the Mohr-Coulomb criterion,we estimate the fluid overpressure thresholds from FMS for different seismic clusters,providing insights into potential physical mechanisms for induced seismicity.The FMS results indicate that shallow reverse earthquakes,with steep dip angles,characterize most events.The source mechanisms of earthquakes with M_(L)≥1.5 are dominated by DC components(>70%),but several earthquakes with M_(L)>3.0 and the microseismic events nearby during injection period display significant non-DC components(>30%).Stress inversion results reveal that the σ_(H_(max)) direction ranges from 120°to 128°.Stress drops of earthquakes range between 0.10 and 64.49 MPa,with high values occurring on reverse faults situated at a greater distance from the shale layer,accompanied by a moderate rotation(≤25°)in the trend of σ_(H_(max)).The seismic clusters close to the shale layer exhibit low fluid overpressure thresholds,prone to being triggered by high pore-pressure fluid.The integrated results suggest that the diffusion of high pore pressures is likely to be the primary factor for observed earthquakes.The present results are expected to offer valuable insights into the origin of anomalous seismicity near the shale gas sites.展开更多
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield...The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.展开更多
基金Supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+1 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi ProvinceIntelligent Optoelectronic Sensing Application Technology Innovation Center and Shanxi Province Optoelectronic Information Science and TechnologyLaboratory,Yuncheng University.
文摘In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022M3H4A6A0103720142)the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.GTL24011-000)+1 种基金the Technology Innovation Program(RS-2024-00404165)through the Korea Planning&Evaluation Institute of Industrial Technology(KEIT)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by the Samsung SDI Co.Ltd.and the Korea Institute of Science and Technology(KIST)institutional program(2E33942,2E3394B)。
文摘Strategies for achieving high-energy-density lithium-ion batteries include using high-capacity materials such as high-nickel NCM,increasing the active material content in the electrode by utilizing high-conductivity carbon nanotubes(CNT)conductive materials,and electrode thickening.However,these methods are still limited due to the limitation in the capacity of high-nickel NCM,aggregation of CNT conductive materials,and nonuniform material distribution of thick-film electrodes,which ultimately damage the mechanical and electrical integrity of the electrode,leading to a decrease in electrochemical performance.Here,we present an integrated binder-CNT composite dispersion solution to realize a high-solids-content(>77 wt%)slurry for high-mass-loading electrodes and to mitigate the migration of binder and conductive additives.Indeed,the approach reduces solvent usage by approximately 30%and ensures uniform conductive additive-binder domain distribution during electrode manufacturing,resulting in improved coating quality and adhesive strength for high-mass-loading electrodes(>12 mAh cm^(−2)).In terms of various electrode properties,the presented electrode showed low resistance and excellent electrochemical properties despite the low CNT contents of 0.6 wt%compared to the pristine-applied electrode with 0.85 wt%CNT contents.Moreover,our strategy enables faster drying,which increases the coating speed,thereby offering potential energy savings and supporting carbon neutrality in wet-based electrode manufacturing processes.
基金supported by Natural Science Foundation of Xiamen,China(No.3502Z20227232)the STS Project of Fujian-CAS(No.2023T3018)Bureau of International Cooperation,Chinese Academy of Sciences(No.322GJHZ2022035MI).
文摘Anammox bacteria in constructed wetlands(CWs)play pivotal role in sustainable nitrogen transformation,yet existing studies lack comprehensive analysis of environmental gradients and microbial interactions,both key factors in anammox bacteria enrichment.This study investigated the mechanisms driving anammox bacteria enrichment in lab-scale simulated CWs treating high-nitrogen wastewater,focusing on bacterial community re-sponses across wetland layers with various strategies,including continuous up-flow influent,nitrogen loading increase,effluent recirculation,intermittent influent,and anammox bacteria inoculation.Results showed that total relative and absolute abundances of anammox bacteria ranged from 0.77%to 12.50%and from 0.13 to 6.46×10^(7) copies/g,respectively.Dissolved oxygen and pH had significant positive correlations with the absolute abundance of anammox bacteria,while organic matter and nitrate negatively impacted their relative abundance.Permutational multivariate analysis of variance indicated that spatial heterogeneity explained more variation in anammox bacteria abundance(43.44%)compared to operational strategies(8.58%).In terms of microbial interactions,60 dominant species exhibited potential correlations with anammox bacteria,comprising 170 interactions(105 positive and 65 negative),which suggested that anammox bacteria generally foster cooperative relationships with dominant bacteria.Notably,significant interspecies interactions were observed between Candidatus Kuenenia(dominant anammox bacteria in CWs)and species within the genera Chitinivibrio-nia and Anaerolineaceae,suggesting that microbial interactions primarily manifest as indirect facilitative effects rather than direct mutualistic relationships.Given that the Normalized Stochasticity Ratio in CWs were<50%,this study inferred that environmental gradients have greater influence on anammox bacteria than microbial interactions.
基金supported by the China Agriculture Research System(Grant No.CARS-23-D06)the Key Research and Development Program of Shaanxi Province(Grant Nos.2024NC2-GJHX-29 and 2024NC-ZDCYL-05-08)Shaanxi Agricultural Collaborative Innovation and Extension Alliance Project(Grant No.LMZD202202).
文摘Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development of mechanization,wide-row spacing substrate cultivation became an optimize mode of the greenhouse cucumber cultivation,aligning with the trend of intelligent agriculture.To determine the optimal nutrient solution supply amount(NS)and supply frequency(SF)for promoting the integrated growth of cucumber under wide-row spacing substrate cultivation,we explored the effects of substrate supply amount(SS),NS,and SF on cucumber yield,quality,and element utilization efficiency.A five-level quadratic orthogonal rotation combination design with three experimental factors(NS,SF,and SS)was implemented for 23 coupling treatments over three growing seasons,including spring(2022S and 2023S)and autumn(2022A).The technique for order preference by similarity to ideal solution(TOPSIS)combining weights based on game theory was applied to construct cucumber comprehensive growth evaluation model.Single and two experimental factors analyses revealed significant effects of single factors and the coupling of NS-SS,NS-SF and SS-SF on the integrated growth of cucumber for all three growing seasons.For the NS-SF-SS combination,the optimal parameters for comprehensive cucumber growth were determined as follows:levels of^(-1).68 for NS,-0.7 for SF,and^(-1).682 for SS in 2022A;-0.43 for NS,-0.06 for SF,and 0.34 for SS in 2022S;0.3 for NS,-0.02 for SF,and 0.04 for SS in 2023S.Furthermore,for SS ranges of 2.00-3.01,3.01-4.50,4.50-5.99,5.99-7.00(L·plant^(-1)),the corresponding NS and SF intervals maximizing cucumber integrated growth in spring were:0.28-0.30(L·plant^(-1))and 6(times·d^(-1)),0.26-0.30(L·plant^(-1))and 6(times·d^(-1)),0.25-0.30(L·plant^(-1))and 6(times·d^(-1)),0.23-0.30(L·plant^(-1))and 6(times·d^(-1)),respectively.With the same SS,the corresponding NS and SF intervals that maximized cucumber integrated growth in autumn were:0.10(L·plant^(-1))and 8(times·d^(-1)),0.18(L·plant^(-1))and 7(times·d^(-1)),0.30(L·plant^(-1))and 6(times·d^(-1)),0.49(L·plant^(-1))and 5(times·d^(-1)),respectively.The results provide a theoretical basis for solution management,and further in-depth research on cucumber cultivation.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
基金Supported by Science and Technology Department of Sichuan Province,No.2020YFS0376National Natural Science Foundation of China,No.81900599Science and Technology Program of Hospital of TCM,Southwest Medical University,No.2022-CXTD-01.
文摘BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.
文摘To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution.
文摘为了客观评价地下空间开发地质适宜性并为评价工作提供一种新思路和参考,提出了一种基于三角模糊数的模糊层次分析法(fuzzy analytic hierarchy process based on triangular fuzzy numbers,FAHP)和优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)相结合的评价方法。通过地质调查研究构建基于土体工程地质性质、水文地质条件、不良地质作用、地形地貌等影响因素为主的层次分析关系模型。基于专家判别利用FAHP计算各评价因素的权重,以各评价指标层的分级临界值作为典型评价样本,利用TOPSIS法对适宜性等级进行非等分划分,基于区间值优化的TOPSIS法建立最终评价模型,通过ArcGIS的空间分析功能等确定每个评价单元适宜性等级。该方法与传统方法相比一定程度上减少了评价过程中专家评判的过多主观影响,评价过程更倾向于定量化,结果更为客观。利用该方法对无锡市区浅层地下空间开发地质适宜性进行评价,评价结果与实际工程经验相符,证明了该方法的有效性,因此该方法对地下空间开发适宜性评价工作具有一定借鉴意义。
基金supported by the National Natural Science Foun-dation of China(Nos.52025028,52332008,52372214,52202273,and U22A20137)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.
基金supported by the Key Research and Development Program of Heilongjiang (2022ZX01A01)National Natural Science Foundation of China (51975167)Natural Science Foundation of Heilongjiang Province(LH2022E080)。
文摘Rare-earth(RE) magnesium alloys have attracted lots of attention due to their excellent mechanical properties.In this work,the microstructure and mechanical properties of as-extruded 8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium alloy under different solution treatment were examined with the optical microscope(OM),scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM),electron back-scattered diffraction(EBSD) and Instron testing machine.The results show that the ES12alloy(solution treatment for 12 h at 520℃) has the highest ultimate tensile strength(UTS) of 390 MPa with a fracture elongation of 24.5% at the co st of a minor drop in yielding strength(YS) compared to the asextruded alloy.During solution treatment,the block-shaped long period stacking ordered(LPSO) in asextruded alloy evolves into plate-shaped LPSO,which disperses at grain boundaries(GBs),and lamellar LPSO,which distributes in grains.The coexistence of plate-shaped and lamellar LPSO,which impedes the dislocations movement,and the activated dislocations are regarded as the primary reasons for mechanical properties improvement.Furthermore,the(11-21) <1-100> texture in as-extruded alloy transforms into the(11-20) <0001> texture in ES12 alloy.The average grain size increases from 3.45 μm in as-extruded alloy to 18.70 μm in ES12 alloy.The Schmid factors of {0001} <11-20>,{10-10} <11-20>,{10-11} <11-20>,and {11-22} <11-23> increase,which indicate that slip systems are more easily activated in plastic deformation.The dynamic recrystallization(DRX) grains fraction increase to 92.8% for ES12 alloy due to the particle-stimulated nucleation(PSN) mechanism triggered by block-shaped and plate-shaped LPSO.The freshly DRXed grains further weaken the texture,and reduce the dislocation density.All of these factors increase elongation of RE magnesium alloy.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0909060001)the National Natural Science Foundation of China(No.52271213)。
文摘This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance.
基金supported by the National Natural Science Foundation of China(Nos.22379019,52172184)Sichuan Science and Technology Program(No.2024YFHZ0313)S&T Special Program of Huzhou(No.2023GZ03)。
文摘Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.
基金Financial support from the National Natural Science Foundation of China (No.22176147)the National Science Fund for Excellent Young Scholars of China (No.21822607)+1 种基金the Fundamental Research Funds for Central Universities (No.22120230295)the State Key Laboratory for Pollution Control is acknowledged.
文摘The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs,causing detrimental ecological effects,which have attracted attention towards effective and sustainable methods for antibiotics and antitumor drug degradation.Here,the hybrid nanomaterial(g-C_(3)N_(4)@Fe/Pd)was synthesized and used to remove a kind of both an antibiotic and antitumor drug named mitoxantrone(MTX)with 92.0%removal efficiency,and the MTX removal capacity is 450 mg/g.After exposing to the hybrid material the MTX aqueous solution changed color from dark blue to lighter progressively,and LC-UV results of residual solutions showthat a newpeak at 3.0min(MTX:13.2min)after removal by g-C_(3)N_(4)@Fe/Pd appears,with the simultaneous detection of intermediate products indicating that g-C_(3)N_(4)@Fe/Pd indeed degrades MTX.Detailed mass spectrometric analysis suggests that the nuclear mass ratio decreased from 445.2(M+1H)to 126.0(M+1H),169.1(M+1H),239.2(M+1H),267.3(M+1H),285.2(M+1H),371.4(M+1H)and 415.2(M+1H),and the maximum proportion(5.63%)substance of all degradation products(126.0(M+1H))is 40-100 times less toxic than MTX.A mechanism for the removal and degradation of mitoxantrone was proposed.Besides,actual water experiments confirmed that the maximum removal capacity of MTX by g-C_(3)N_(4)@Fe/Pd is up to 492.4 mg/g(0.02 g/L,10 ppm).
文摘Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.
基金financially supported by National Natural Science Foundation of China(grant numbers:52171100,U20A20234)National Key R&D Program of China(grant number:2021YFB3701100)。
文摘The performance of Mg alloys is significantly influenced by the concentrations and solid solution behavior of the alloying elements.In this work,the solid solution behavior of 20 alloying elements in 190 ternary Mg alloy systems at 500℃are systematically investigated.The solid solution behavior of a set of two different alloying elements in Mg alloy systems are suggested to be classified into three categories:inclusivity,exclusivity and proportionality.Inclusivity classification indicates that the two alloying elements are inclusive inα-Mg,increasing the joint solubility of both elements.Exclusivity classification suggests that the two alloying elements have a low joint solid solubility inα-Mg,since they prefer to form stable second phases.For the proportionality classification,the solubility curve of the ternary Mg alloy systems is a straight line connecting the solubility points of the two sub-binary systems.The proposed classification theory was validated by key experiments and the calculation of formation energies.The interaction effects between alloying elements and the preference of formation of second phases are the main factors determining the solid solution behavior classifications.Based on the observed solid solution features of multi-component Mg alloys,principles for alloy design of different types of high-performance Mg alloys were proposed in this work.
基金Project(52278421)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0754)supported by the Fundamental Research Funds for the Central Universities of Central South University,China+2 种基金Project(2023CXQD067)supported by the Central South University Innovation-Driven Research Programme,ChinaProject(2022QNRC001)supported by Young Elite Scientists Sponsorship Program by CASTProject(2023TJ-N24)supported by the Youth Talent Program by China Railway Society and the Hunan Provincial Science and Technology Promotion Talent Project。
文摘Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20266 and 12302503)Scientific and technological research projects in Sichuan province(Grant No.2024NSFSC0973).
文摘Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude M_(L)≥1.5 in the Changning shale gas field from January 2016 to May 2017 by fitting three-component waveforms.We then constrain the directions of the maximum horizontal stress(σ_(H_(max)))for four dense earthquake clusters using the stress tensor inversion method.The stress drops of 121 earthquakes with M_(L)≥1.5 are calculated using the spectral ratio method.We examine the spatiotemporal heterogeneity of stress field,and discuss the cause of non-double-couple(non-DC)components in seismicity clusters.Following the Mohr-Coulomb criterion,we estimate the fluid overpressure thresholds from FMS for different seismic clusters,providing insights into potential physical mechanisms for induced seismicity.The FMS results indicate that shallow reverse earthquakes,with steep dip angles,characterize most events.The source mechanisms of earthquakes with M_(L)≥1.5 are dominated by DC components(>70%),but several earthquakes with M_(L)>3.0 and the microseismic events nearby during injection period display significant non-DC components(>30%).Stress inversion results reveal that the σ_(H_(max)) direction ranges from 120°to 128°.Stress drops of earthquakes range between 0.10 and 64.49 MPa,with high values occurring on reverse faults situated at a greater distance from the shale layer,accompanied by a moderate rotation(≤25°)in the trend of σ_(H_(max)).The seismic clusters close to the shale layer exhibit low fluid overpressure thresholds,prone to being triggered by high pore-pressure fluid.The integrated results suggest that the diffusion of high pore pressures is likely to be the primary factor for observed earthquakes.The present results are expected to offer valuable insights into the origin of anomalous seismicity near the shale gas sites.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078334)the National Key Research and Development Program of China(Grant No.2017YFC0805402)the Tianjin Research Innovation Project for Postgraduate Students(Grant No.2021YJSB141).
文摘The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.