Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u...Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u0 is uniform continuousfunction in RN , F is continuous function in RNx(N) and F is degenerate elliptic, then thisequation has the sole viscosity solution.展开更多
This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensiona...This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensional balanced model. The main aim of this paper is to introduce some results about the global and local (with respect to time) existence of solutions given by the authors in recent years, but others' important contributions and the literature on this subject are also quoted. We discuss briefly the relationships among the existence and uniqueness, physical instability and computational instability. In the appendixes, some key mathematical techniques in obtaining our results are presented, which are of vital importance to other problems in geophysical fluid dynamics as well.展开更多
The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the sec...The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in ste...In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in stead of Ito formula, which leads to simplicity the process of proof and extends the result to unbounded coefficients case.展开更多
In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spac...In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spaces, A is an infinitesimal generator of a strongly continuous semigroup s(t) on Y, f(t, y): [0, T] x Y --> Y, and G(t, y): [0, T] X Y --> L(H, Y), y0: OMEGA --> Y is a ramdom variable of square integrable. We apply theory of the semigroup and obtain two conclusions of uniqueness of the mild solution of (1) which include the corresponding results in [4].展开更多
A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This appr...A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This approach gives a natural numerical scheme to approximate the solution.The convergence of the approximation is proved and its asymptatic order obtained.展开更多
We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co...We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.展开更多
The paper studies a class of nonlinear elliptic partial differential equations on a compact Riemannian manifold (M,g) with some curvature restriction. The authors try to prove some uniqueness and nonexistent results...The paper studies a class of nonlinear elliptic partial differential equations on a compact Riemannian manifold (M,g) with some curvature restriction. The authors try to prove some uniqueness and nonexistent results for the positive solutions of the equations concerned.展开更多
Eringen’s two-phase local/nonlocal model is applied to an Euler-Bernoulli nanobeam considering the bending-induced axial force, where the contribution of the axial force to bending moment is calculated on the deforme...Eringen’s two-phase local/nonlocal model is applied to an Euler-Bernoulli nanobeam considering the bending-induced axial force, where the contribution of the axial force to bending moment is calculated on the deformed state. Basic equations for the corresponding one-dimensional beam problem are obtained by degenerating from the three-dimensional nonlocal elastic equations. Semi-analytic solutions are then presented for a clamped-clamped beam subject to a concentrated force and a uniformly distributed load, respectively. Except for the traditional essential boundary conditions and those required to be satisfied by transferring an integral equation to its equivalent differential form, additional boundary conditions are needed and should be chosen with great caution, since numerical results reveal that non-unique solutions might exist for a nonlinear problem if inappropriate boundary conditions are used. The validity of the solutions is examined by plotting both sides of the original integro-differential governing equation of deflection and studying the error between both sides. Besides, an increase in the internal characteristic length would cause an increase in the deflection and axial force of the beam.展开更多
In this paper, a non-variational version of a max-min principle is proposed, andan existence and uniqueness result is obtained for the nonlinear two-point boundaryvalue problenl u' + g(t.u) = f(t),u(0) = u(2...In this paper, a non-variational version of a max-min principle is proposed, andan existence and uniqueness result is obtained for the nonlinear two-point boundaryvalue problenl u' + g(t.u) = f(t),u(0) = u(2π) = 0展开更多
In this paper, the uniqueness for the linear theory of a new generalized thermo-elastic model of the continuum with the centre symmetry is shown under less assumptions, whose constitutive equations contain deformatio...In this paper, the uniqueness for the linear theory of a new generalized thermo-elastic model of the continuum with the centre symmetry is shown under less assumptions, whose constitutive equations contain deformation, temperature and its rate as well as its gradient, electric field and its gradient. So the phase variation is pemitted when the deformation proceeds as long as the constitutive equations preserve their Original forms.展开更多
In this paper, a mini max theorem was showed mega which the paper proves a new existent and unique result on solution of the boundary value problem for the nonlinear wave equation by using the mini max theorem.
This paper is concerned with the following second-order vector boundary value problem :x^R=f(t,Sx,x,x'),0〈t〈1,x(0)=A,g(x(1),x'(1))=B,where x,f,g,A and B are n-vectors. Under appropriate assumptions,exis...This paper is concerned with the following second-order vector boundary value problem :x^R=f(t,Sx,x,x'),0〈t〈1,x(0)=A,g(x(1),x'(1))=B,where x,f,g,A and B are n-vectors. Under appropriate assumptions,existence and uniqueness of solutions are obtained by using upper and lower solutions method.展开更多
In this paper, we study the long-term dynamic behavior of a class of generalized high-order Kirchhoff-type coupled wave equations. Firstly, the existence of uniqueness global solution of this kind of equations in E<...In this paper, we study the long-term dynamic behavior of a class of generalized high-order Kirchhoff-type coupled wave equations. Firstly, the existence of uniqueness global solution of this kind of equations in E<sub>k</sub> space is proved by prior estimation and Galerkin method;Then, through using Rellich-Kondrachov compact embedding theorem, it is proved that the solution semigroup S(t) has the family of the global attractors A<sub>k</sub> in space E<sub>k</sub>;Finally, through linearization method, proves that the operator semigroup S(t) Frechet differentiable and the attenuation of linearization problem volume element. Furthermore, we can obtain the finite Hausdorff dimension and Fractal dimension of the family of the global attractors A<sub>k</sub>.展开更多
We consider the singular Dirichlet problem for the Monge-Ampère type equation■=0,whereΩis a strictly convex and bounded smooth domain in■is positive and strictly decreasing in(0,∞)with■is positive inΩ.We ob...We consider the singular Dirichlet problem for the Monge-Ampère type equation■=0,whereΩis a strictly convex and bounded smooth domain in■is positive and strictly decreasing in(0,∞)with■is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.展开更多
A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and im...A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and implicit or explicit based on the parameter choice. The initial value after discretization has second-order accuracy that is consistent with the scheme accuracy. The existence and the uniqueness of the difference solution are proved. Based on the priori estimates and an inequality about norms, the stability and the convergence of difference solutions with the second-order are proved in the energy norm. Experimental results demonstrate the efficiency of the new scheme.展开更多
In this paper, we study the long time behavior of a class of Kirchhoff equations with high order strong dissipative terms. On the basis of the proper hypothesis of rigid term and nonlinear term of Kirchhoff equation, ...In this paper, we study the long time behavior of a class of Kirchhoff equations with high order strong dissipative terms. On the basis of the proper hypothesis of rigid term and nonlinear term of Kirchhoff equation, firstly, we evaluate the equation via prior estimate in the space <em>E</em><sub>0</sub> and <em>E<sub>k</sub></em>, and verify the existence and uniqueness of the solution of the equation by using Galerkin’s method. Then, we obtain the bounded absorptive set <em>B</em><sub><em>0k</em> </sub>on the basis of the prior estimate. Moreover, by using the Rellich-Kondrachov Compact Embedding theorem, we prove that the solution semigroup <em>S</em>(<em>t</em>) of the equation has the family of the global attractor <em>A<sub>k</sub></em><sub> </sub>in space <em>E<sub>k</sub></em>. Finally, we prove that the solution semigroup <em>S</em>(<em>t</em>) is Frechet differentiable on <em>E<sub>k</sub></em> via linearizing the equation. Furthermore, we can obtain the finite Hausdorff dimension and Fractal dimension of the family of the global attractor <em>A<sub>k</sub></em>.展开更多
文摘Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u0 is uniform continuousfunction in RN , F is continuous function in RNx(N) and F is degenerate elliptic, then thisequation has the sole viscosity solution.
文摘This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensional balanced model. The main aim of this paper is to introduce some results about the global and local (with respect to time) existence of solutions given by the authors in recent years, but others' important contributions and the literature on this subject are also quoted. We discuss briefly the relationships among the existence and uniqueness, physical instability and computational instability. In the appendixes, some key mathematical techniques in obtaining our results are presented, which are of vital importance to other problems in geophysical fluid dynamics as well.
基金theResearchFoundationofEducationalCommitteeofYunnanProvince China
文摘The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
基金Foundation item: Hubei University Youngth Foundations (099206).
文摘In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in stead of Ito formula, which leads to simplicity the process of proof and extends the result to unbounded coefficients case.
基金This work is supported by the National Science Foundation of China.
文摘In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spaces, A is an infinitesimal generator of a strongly continuous semigroup s(t) on Y, f(t, y): [0, T] x Y --> Y, and G(t, y): [0, T] X Y --> L(H, Y), y0: OMEGA --> Y is a ramdom variable of square integrable. We apply theory of the semigroup and obtain two conclusions of uniqueness of the mild solution of (1) which include the corresponding results in [4].
文摘A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This approach gives a natural numerical scheme to approximate the solution.The convergence of the approximation is proved and its asymptatic order obtained.
基金supported by the National Natural Science Foundation of China(12371211,12126359)the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).
文摘We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.
文摘The paper studies a class of nonlinear elliptic partial differential equations on a compact Riemannian manifold (M,g) with some curvature restriction. The authors try to prove some uniqueness and nonexistent results for the positive solutions of the equations concerned.
基金Project supported by the National Natural Science Foundation of China(No.11472130)
文摘Eringen’s two-phase local/nonlocal model is applied to an Euler-Bernoulli nanobeam considering the bending-induced axial force, where the contribution of the axial force to bending moment is calculated on the deformed state. Basic equations for the corresponding one-dimensional beam problem are obtained by degenerating from the three-dimensional nonlocal elastic equations. Semi-analytic solutions are then presented for a clamped-clamped beam subject to a concentrated force and a uniformly distributed load, respectively. Except for the traditional essential boundary conditions and those required to be satisfied by transferring an integral equation to its equivalent differential form, additional boundary conditions are needed and should be chosen with great caution, since numerical results reveal that non-unique solutions might exist for a nonlinear problem if inappropriate boundary conditions are used. The validity of the solutions is examined by plotting both sides of the original integro-differential governing equation of deflection and studying the error between both sides. Besides, an increase in the internal characteristic length would cause an increase in the deflection and axial force of the beam.
文摘In this paper, a non-variational version of a max-min principle is proposed, andan existence and uniqueness result is obtained for the nonlinear two-point boundaryvalue problenl u' + g(t.u) = f(t),u(0) = u(2π) = 0
基金the National Natural Science Foundation of China(19802012)
文摘In this paper, the uniqueness for the linear theory of a new generalized thermo-elastic model of the continuum with the centre symmetry is shown under less assumptions, whose constitutive equations contain deformation, temperature and its rate as well as its gradient, electric field and its gradient. So the phase variation is pemitted when the deformation proceeds as long as the constitutive equations preserve their Original forms.
基金the Natural Science Foundation of Southern Yangtze University China(0371)
文摘In this paper, a mini max theorem was showed mega which the paper proves a new existent and unique result on solution of the boundary value problem for the nonlinear wave equation by using the mini max theorem.
文摘This paper is concerned with the following second-order vector boundary value problem :x^R=f(t,Sx,x,x'),0〈t〈1,x(0)=A,g(x(1),x'(1))=B,where x,f,g,A and B are n-vectors. Under appropriate assumptions,existence and uniqueness of solutions are obtained by using upper and lower solutions method.
文摘In this paper, we study the long-term dynamic behavior of a class of generalized high-order Kirchhoff-type coupled wave equations. Firstly, the existence of uniqueness global solution of this kind of equations in E<sub>k</sub> space is proved by prior estimation and Galerkin method;Then, through using Rellich-Kondrachov compact embedding theorem, it is proved that the solution semigroup S(t) has the family of the global attractors A<sub>k</sub> in space E<sub>k</sub>;Finally, through linearization method, proves that the operator semigroup S(t) Frechet differentiable and the attenuation of linearization problem volume element. Furthermore, we can obtain the finite Hausdorff dimension and Fractal dimension of the family of the global attractors A<sub>k</sub>.
基金supported by Shandong Provincial NSF(ZR2022MA020).
文摘We consider the singular Dirichlet problem for the Monge-Ampère type equation■=0,whereΩis a strictly convex and bounded smooth domain in■is positive and strictly decreasing in(0,∞)with■is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.
文摘A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and implicit or explicit based on the parameter choice. The initial value after discretization has second-order accuracy that is consistent with the scheme accuracy. The existence and the uniqueness of the difference solution are proved. Based on the priori estimates and an inequality about norms, the stability and the convergence of difference solutions with the second-order are proved in the energy norm. Experimental results demonstrate the efficiency of the new scheme.
文摘In this paper, we study the long time behavior of a class of Kirchhoff equations with high order strong dissipative terms. On the basis of the proper hypothesis of rigid term and nonlinear term of Kirchhoff equation, firstly, we evaluate the equation via prior estimate in the space <em>E</em><sub>0</sub> and <em>E<sub>k</sub></em>, and verify the existence and uniqueness of the solution of the equation by using Galerkin’s method. Then, we obtain the bounded absorptive set <em>B</em><sub><em>0k</em> </sub>on the basis of the prior estimate. Moreover, by using the Rellich-Kondrachov Compact Embedding theorem, we prove that the solution semigroup <em>S</em>(<em>t</em>) of the equation has the family of the global attractor <em>A<sub>k</sub></em><sub> </sub>in space <em>E<sub>k</sub></em>. Finally, we prove that the solution semigroup <em>S</em>(<em>t</em>) is Frechet differentiable on <em>E<sub>k</sub></em> via linearizing the equation. Furthermore, we can obtain the finite Hausdorff dimension and Fractal dimension of the family of the global attractor <em>A<sub>k</sub></em>.