Composite solid electrolytes(CSEs)are promising for solid-state Li metal batteries but suffer from inferior room-temperature ionic conductivity due to sluggish ion transport and high cost due to expensive active ceram...Composite solid electrolytes(CSEs)are promising for solid-state Li metal batteries but suffer from inferior room-temperature ionic conductivity due to sluggish ion transport and high cost due to expensive active ceramic fillers.Here,a host–vip inversion engineering strategy is proposed to develop superionic CSEs using cost-effective SiO_(2) nanoparticles as passive ceramic hosts and poly(vinylidene fluoride-hexafluoropropylene)(PVH)microspheres as polymer vips,forming an unprecedented“polymer vip-in-ceramic host”(i.e.,PVH-in-SiO_(2))architecture differing from the traditional“ceramic vip-in-polymer host”.The PVH-in-SiO_(2) exhibits excellent Li-salt dissociation,achieving high-concentration free Li+.Owing to the low diffusion energy barriers and high diffusion coefficient,the free Li+is thermodynamically and kinetically favorable to migrate to and transport at the SiO_(2)/PVH interfaces.Consequently,the PVH-in-SiO_(2) delivers an exceptional ionic conductivity of 1.32.10−3 S cm−1 at 25℃(vs.typically 10−5–10−4 S cm−1 using high-cost active ceramics),achieved under an ultralow residual solvent content of 2.9 wt%(vs.8–15 wt%in other CSEs).Additionally,PVH-in-SiO_(2) is electrochemically stable with Li anode and various cathodes.Therefore,the PVH-in-SiO_(2) demonstrates excellent high-rate cyclability in LiFePO4|Li full cells(92.9%capacity-retention at 3C after 300 cycles under 25℃)and outstanding stability with high-mass-loading LiFePO4(9.2 mg cm−1)and high-voltage NCM622(147.1 mAh g−1).Furthermore,we verify the versatility of the host–vip inversion engineering strategy by fabricating Na-ion and K-ion-based PVH-in-SiO_(2) CSEs with similarly excellent promotions in ionic conductivity.Our strategy offers a simple,low-cost approach to fabricating superionic CSEs for large-scale application of solid-state Li metal batteries and beyond.展开更多
Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co...Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.展开更多
The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-in...The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-initiated in situ polymerization of GPE was carried out via incorporating the precursor solution in advance into a self- standing binder-free oxygen electrode of Co3O4 nanosheets array grown on carbon cloth (Co3O4@CC), forming an integrated GPE-Co3O4@CC architecture. The performance of the solid-state LOBs using the GPE-Co3O4@CC assembly is greatly enhanced compared to the counterparts with a traditional cell structure, in which GPE was sandwiched by a lithium metal and a cathode. The enhanced performance is ascribed to the combination of the in situ polymerization of GPE and the versatile structure of nanoarray electrode, which results in abundant interfacial contacts between GPE and electrode. This work presents an alternative way to develop high-performance solid-state LOBs by combining the advantages of both gel polymer electrolytes and nanoarray electrodes.展开更多
Phosphorus-based anode is a promising anode for sodium-ion batteries(SIBs)due to its high specific capacity,however,suffers from poor electronic conductivity and unfavorable electrochemical reversibility.Incorporating...Phosphorus-based anode is a promising anode for sodium-ion batteries(SIBs)due to its high specific capacity,however,suffers from poor electronic conductivity and unfavorable electrochemical reversibility.Incorporating metals such as copper(Cu)into phosphorus has been demonstrated to not only improve the electronic conductivity but also accommodate the volume change during cycling,yet the underline sodiation mechanism is not clear.Herein,take a copper phosphide and reduced graphene oxide(CuP_(2)/C)composite as an example,which delivers a high reversible capacity of>900 mAh/g.Interestingly,it is revealed that the native oxidation PO_(x)components of the CuP_(2)/C composite show higher electrochemical reversibility than the bulk Cu P_(2),based on a quantitative analysis of high-resolution solid-state^(31)P NMR,ex-situ XPS and synchrotron X-ray diffraction characterization techniques.The sodiation products Na_(3)PO_(4) and Na_(4)P_(2)O_(7) derived from PO_(x) could react with Na-P alloys and regenerate to PO_(x) during charge process,which probably accounts for the high reversible capacity of the Cu P_(2)/C anode.The findings also illustrate that the phosphorus transforms into nanocrystalline Na_(3)P and Na_(x)P alloys,which laterally shows crystallization-amorphization evolution process during cycling.展开更多
The replacement of liquid electrolyte with solid electrolyte can significantly improve the safety and power/energy density of lithium batteries.70Li_(2)S–30P_(2)S_(5) is one of the most promising solid electrolytes w...The replacement of liquid electrolyte with solid electrolyte can significantly improve the safety and power/energy density of lithium batteries.70Li_(2)S–30P_(2)S_(5) is one of the most promising solid electrolytes with high conductivity for solid–state batteries.In this work,the ionic conductivity and stability toward moisture and lithium metal of 70Li_(2)S–30P_(2)S_(5) were enhanced by introducing the different amounts of Li_(2)O additives.65Li_(2)S–30P_(2)S_(5)–1%Li_(2)O delivered the highest conductivity,while 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O showed the best moisture stability and improved lithium compatibility.Solid-state batteries using 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O electrolyte and high-voltage LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) cathode exhibited low initial discharge capacity(100 mAh·g^(-1))and Coulombic efficiency(69%).Li_(3)InCl_(6) electrolytes were introduced both in the cathode mixture to replace sulfide electrolyte and in the interface layer to improve the cathode compatibility for the solid-state batteries,showing enhanced discharge capacity(175 mAh·g^(-1))and improved initial Coulombic efficiency(86%).Moreover,it also exhibited good performance at-20℃.展开更多
The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attentio...The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attention has been focused on modulating and developing catalyst interface contact engineering between a carbon substrate and dispersed metal.Here,a highly dispersed ultrafine ruthenium(Ru)NP strategy by double spatial confinement is proposed,that is,incorporating directed growth of metal–organic framework crystals into a bacterial cellulose templating substrate to integrate their respective merits as an excellent electrocatalytic cathode catalyst for a quasi-solid-state Li–O_(2) battery.The porous carbon matrix with highly dispersed ultrafine Ru NPs is well designed and used as cathode catalysts in a Li–O_(2) battery,demonstrating a high discharge areal capacity of 6.82 mAh cm^(–2) at 0.02 mA cm^(–2),a high-rate capability of 4.93 mAh cm^(–2) at 0.2 mA cm^(–2),and stable discharge/charge cycling for up to 500 cycles(2000 h)with low overpotentials of~1.4 V.This fundamental understanding of the structure–performance relationship demonstrates a new and promising approach to optimize highly efficient cathode catalysts for solid-state Li–O_(2) batteries.展开更多
Herein,we first report one-step synthesis of uniform Mo2 C microflowers(MCMFs)from low-cost precursors via industrialized solid-state strategy.With fine optimization in precursor ratio and pyrolysis temperatures,the a...Herein,we first report one-step synthesis of uniform Mo2 C microflowers(MCMFs)from low-cost precursors via industrialized solid-state strategy.With fine optimization in precursor ratio and pyrolysis temperatures,the as-fabricated MCMFs are assembled well with interconnected single-crystalline nanosheet subunits.More encouragingly,the resultant MCMFs are further highlighted as a competitive anode with robust and long-duration lithium-storage behaviors towards high-performance Li-ion batteries.展开更多
A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6...A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6× 10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solidstate electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.展开更多
All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid elect...All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.展开更多
The recovery and utilization of carbon dioxide(CO_(2))is the key to achieve the targets of peak carbon dioxide emissions and carbon neutrality.The Na-CO_(2)battery made with cheap alkali metal sodium and greenhouse ga...The recovery and utilization of carbon dioxide(CO_(2))is the key to achieve the targets of peak carbon dioxide emissions and carbon neutrality.The Na-CO_(2)battery made with cheap alkali metal sodium and greenhouse gas CO_(2)is an effective strategy to consume CO_(2)and store clean renewable energy.However,the liquid electrolyte volatilization in the open battery system and inevitable dendrite growth restrict the application of Na-CO_(2)batteries.In this work,magnesium-doped Na_(3)Zr_(2)Si_(2)PO_(12)(NZSP)was studied as a solid electrolyte for solid-state Na-CO_(2)batteries.The ionic conductivity of Na_(3.2)Zr_(1.9)Mg_(0.1)Si_(2)PO_(12)reaches 1.16 mS cm^(−1)at room temperature by replacing Zr ions in Na_(3.2)Zr_(1.9)Mg_(0.1)Si_(2)PO_(12)with Mg ions,and the structural changes are analyzed by neutron powder diffraction.The composite electrolyte consisting of highly conductive Na_(3.2)Zr_(1.9)Mg_(0.1)Si_(2)PO_(12)and high processability poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)is utilized for the first time to assemble a solid-state Na-CO_(2)battery.The cell shows a full discharge capacity of 7720 mAh g^(−1)at 200 mA g^(−1).The middle gap voltage is lower than 2 V after 120 cycles at 200 mA g^(−1)and at a cut-off capacity of 500 mAh g^(−1).This work demonstrates a promising strategy to design high-performance solid-state Na-CO_(2)batteries.展开更多
Solid-state batteries(SSBs)have been considered the most promising technology because of their superior energy density and safety.Among all the solid-state electrolytes(SEs),Li_(7) La_(3) Zr_(2) O_(12)(LLZO)with high ...Solid-state batteries(SSBs)have been considered the most promising technology because of their superior energy density and safety.Among all the solid-state electrolytes(SEs),Li_(7) La_(3) Zr_(2) O_(12)(LLZO)with high ionic conductivity(3×10^(−4) S/cm)has been widely investigated.However,its large-scale production in ambient air faces a challenge.After air exposure,the generated Li_(2)CO_(3) layer deteriorates the ionic conductivity and interfacial wettability,thus greatly compromising the electrochemical performance of SSBs.Many works aim to eliminate this layer to recover the pristine LLZO surface.Unfor-tunately,few articles have emphasized the merits of Li_(2)CO_(3).In this review,we focus on the two-sidedness of Li_(2)CO_(3).We discuss the various characteristics of Li_(2)CO_(3) that can be used and recapitulate the strategies that utilize Li_(2)CO_(3).Insulating Li_(2)CO_(3) is no longer an obstacle but an opportunity for realizing intimate interfacial contact,high air stability,and outstand-ing electrochemical performance.This review aims to off er insightful guidelines for treating air-induced Li_(2)CO_(3) and lead to developing the enhanced air stability and electrochemical performance of LLZO.展开更多
Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life....Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life.So all kinds of catalysts have been studied on the cathode.Compared to heterogeneous solid catalysts,soluble catalysts achieve faster and more effective transport of electrons by reversible redox pairs.Here,we first report ruthenocene(Ruc) as a mobile redox mediator in a Li-O2 battery.0.01 mol/L Ruc in the electrolyte effectively reduces the charging voltage by 610 mV.Additionally,Ruc greatly increases the cycling life by four-fold(up to 83 cycles) with a simple ketjen black(KB) cathode.The results of SEM,XPS and XRD confirm that less discharge product residue accumulated after recharge.To verify the reaction mechanisms of the mediato r,free energy profiles of the possible reaction pathways based on DFT are provided.展开更多
Combining nanomaterials with complementary properties in a well-designed structure is an effective tactic to exploit multifunctional, high-performance materials for the energy conversion and storage. Nonprecious metal...Combining nanomaterials with complementary properties in a well-designed structure is an effective tactic to exploit multifunctional, high-performance materials for the energy conversion and storage. Nonprecious metal catalysts, such as cobalt oxide, with superior activity and excellent stability to other catalysts are widely desired. Nevertheless, the performance of CoO nanoparticles as an electrode material were significantly limit for its inferior conductivity, dissolution, and high cohesion. Herein, we grow ultrafine cobalt monoxide to decorate the interlayer and surface of the Ti3C2 Txnanosheets via a hydrothermal method companied by calcination. The layered MXenes act as the underlying conductive substrate,which not only increase the electron transfer rate at the interface but also greatly improve the electrochemical properties of the nanosized Co O particles by restricting the aggregation of CoO. The resulting CoO/Ti3C2 Txnanomaterial is applied as oxygen electrode for lithium-oxygen battery and achieves more than 160 cycles and first cycle capacity of 16,220 mAh g-1 at 100 mA g-1. This work paves a promising avenue for constructing a bi-functional catalyst by coupling the active component of a transition metal oxide(TMO) with the MXene materials in lithium-oxygen battery.展开更多
Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with ...Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.展开更多
Conventional Li-O2 battery is hardly considered as a next-generation flexible electronics thus far,since it is inflexible,bulk,and limited by the absence of the adjustable cell configuration.Here,we report a binder-fr...Conventional Li-O2 battery is hardly considered as a next-generation flexible electronics thus far,since it is inflexible,bulk,and limited by the absence of the adjustable cell configuration.Here,we report a binder-free and flexible electrode of x wt%MoO2 NPs/CTs(x=6,16,and 28).A cell with 16 wt% MoO2 NPs/CTs displays a good cyclability over 240 cycles with a low overpotential of 0.33 V on the 1st cycle at a constant current density of 0.2 mA cm-2,a considerable rate performance,a superior reversibility associated with the desired formation and degradation of Li2O2,and a high electrochemical stability even under stringent bending and twisting conditions.Our work represents a promising progress in the material development and architecture design of O2 electrode for flexible Li-O2 batteries.展开更多
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X...Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries.展开更多
Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durabili...Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durability as well as inferior electrochemical performance. Herein, in order to improve the safety and durability, a succinonitrile(SN) modified composite SSE is proposed. In this SSE, SN is introduced for eliminating the boundary between ceramic particles, increasing the amorphous region of polymer and ensuring fast ionic transport. Subsequently, the symmetric battery based on the proposed SSE achieves a long cycle life of 3000 h. Moreover, the elaborate cathode interface through the SN participation effectively reduces the barriers to the combination between lithium ions and electrons, facilitating the corresponding electrochemical reactions.As a result, the solid-state Li-O_(2)battery based on this SSE and tuned cathode interface achieves improved electrochemical performance including large specific capacity over 12,000 m Ah g^(-1), enhanced rate capacity as well as stable cycle life of 54 cycles at room temperature. This ingenious design provides a new orientation for the evolution of solid-state Li-O_(2)batteries.展开更多
As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structur...As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work.展开更多
Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an indepth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the posit...Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an indepth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the positive electrode distinguish Li-O2 batteries from the conventional Li-ion cells and play a crucial role in the Li-O2 cell's performance (capacity, rate capability, and cycle life). Recent advances in fundamental studies of oxygen reactions in aprotic Li-O2 batteries are reviewed, including the reaction route, kinetics, morphological evolution of Li2O2, and charge transport within Li2O2. Prospects are also provided for future fundamental investigations of Li-O2 chemistry.展开更多
LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3...LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3(PO4)2 coating forms a thin layer on the surface of the LiNi0.8Co0.2O2 material and a solid solution by interacting with the LiNi0.8Co0.2O2 core material during calcination at 700℃ for 4 h. Charge-discharge experiment results show that the Co3(PO4)2 coating improves the cycling stability of the LiNi0.8Co0.2O2 cathode material. The capacity retention of the pristine LiNi0.8Co0.2O2 cathode after 50 cycles is 83.6%, whereas it is 91.7% in the case of the LiNi0.8Co0.2O2 cathode coated with 1 wt.% Co3(PO4)2. Storage tests of the 4.35 V charged electrode at 60℃ after a month show that the Co3(POg)2-coated sample exhibits good storage properties compared with the pristine sample.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.52250010 and 52201242)the 261 Project of MIIT,Natural Science Foundation of Jiangsu Province(No.BK20240179)the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001).
文摘Composite solid electrolytes(CSEs)are promising for solid-state Li metal batteries but suffer from inferior room-temperature ionic conductivity due to sluggish ion transport and high cost due to expensive active ceramic fillers.Here,a host–vip inversion engineering strategy is proposed to develop superionic CSEs using cost-effective SiO_(2) nanoparticles as passive ceramic hosts and poly(vinylidene fluoride-hexafluoropropylene)(PVH)microspheres as polymer vips,forming an unprecedented“polymer vip-in-ceramic host”(i.e.,PVH-in-SiO_(2))architecture differing from the traditional“ceramic vip-in-polymer host”.The PVH-in-SiO_(2) exhibits excellent Li-salt dissociation,achieving high-concentration free Li+.Owing to the low diffusion energy barriers and high diffusion coefficient,the free Li+is thermodynamically and kinetically favorable to migrate to and transport at the SiO_(2)/PVH interfaces.Consequently,the PVH-in-SiO_(2) delivers an exceptional ionic conductivity of 1.32.10−3 S cm−1 at 25℃(vs.typically 10−5–10−4 S cm−1 using high-cost active ceramics),achieved under an ultralow residual solvent content of 2.9 wt%(vs.8–15 wt%in other CSEs).Additionally,PVH-in-SiO_(2) is electrochemically stable with Li anode and various cathodes.Therefore,the PVH-in-SiO_(2) demonstrates excellent high-rate cyclability in LiFePO4|Li full cells(92.9%capacity-retention at 3C after 300 cycles under 25℃)and outstanding stability with high-mass-loading LiFePO4(9.2 mg cm−1)and high-voltage NCM622(147.1 mAh g−1).Furthermore,we verify the versatility of the host–vip inversion engineering strategy by fabricating Na-ion and K-ion-based PVH-in-SiO_(2) CSEs with similarly excellent promotions in ionic conductivity.Our strategy offers a simple,low-cost approach to fabricating superionic CSEs for large-scale application of solid-state Li metal batteries and beyond.
基金financially supported by National Natural Science Foundation of China(21701083)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_3137)。
文摘Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.21673169 and 51672205)the National Key Research and Development Program of China(No.2016YFA0202602)+1 种基金the Research Start-Up Fund from Wuhan University of Technologythe Fundamental Research Funds for the Central Universities(Nos.2016IVA083 and 2017IB005)
文摘The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-initiated in situ polymerization of GPE was carried out via incorporating the precursor solution in advance into a self- standing binder-free oxygen electrode of Co3O4 nanosheets array grown on carbon cloth (Co3O4@CC), forming an integrated GPE-Co3O4@CC architecture. The performance of the solid-state LOBs using the GPE-Co3O4@CC assembly is greatly enhanced compared to the counterparts with a traditional cell structure, in which GPE was sandwiched by a lithium metal and a cathode. The enhanced performance is ascribed to the combination of the in situ polymerization of GPE and the versatile structure of nanoarray electrode, which results in abundant interfacial contacts between GPE and electrode. This work presents an alternative way to develop high-performance solid-state LOBs by combining the advantages of both gel polymer electrolytes and nanoarray electrodes.
基金financially supported by National Nature Science Foundation of China(Nos.21805278,22272175 and 22209075)the Fujian Science and Technology Planning Projects of China(Nos.2022T3067 and 2023H0045)+1 种基金the Self-deployment Project Research Programs of Haixi Institutes,Chinese Academy of Sciences(No.CXZX-2022-JQ12)the Self-deployment project of XIREM(No.2023GG02)。
文摘Phosphorus-based anode is a promising anode for sodium-ion batteries(SIBs)due to its high specific capacity,however,suffers from poor electronic conductivity and unfavorable electrochemical reversibility.Incorporating metals such as copper(Cu)into phosphorus has been demonstrated to not only improve the electronic conductivity but also accommodate the volume change during cycling,yet the underline sodiation mechanism is not clear.Herein,take a copper phosphide and reduced graphene oxide(CuP_(2)/C)composite as an example,which delivers a high reversible capacity of>900 mAh/g.Interestingly,it is revealed that the native oxidation PO_(x)components of the CuP_(2)/C composite show higher electrochemical reversibility than the bulk Cu P_(2),based on a quantitative analysis of high-resolution solid-state^(31)P NMR,ex-situ XPS and synchrotron X-ray diffraction characterization techniques.The sodiation products Na_(3)PO_(4) and Na_(4)P_(2)O_(7) derived from PO_(x) could react with Na-P alloys and regenerate to PO_(x) during charge process,which probably accounts for the high reversible capacity of the Cu P_(2)/C anode.The findings also illustrate that the phosphorus transforms into nanocrystalline Na_(3)P and Na_(x)P alloys,which laterally shows crystallization-amorphization evolution process during cycling.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51821005,21975087,U1966214 and 51902116)the Certificate of China Postdoctoral Science Foundation Grant(No.2019M652634)We gratefully acknowledge the Analytical and Testing Center of HUST for allowing us to use its facilities.
文摘The replacement of liquid electrolyte with solid electrolyte can significantly improve the safety and power/energy density of lithium batteries.70Li_(2)S–30P_(2)S_(5) is one of the most promising solid electrolytes with high conductivity for solid–state batteries.In this work,the ionic conductivity and stability toward moisture and lithium metal of 70Li_(2)S–30P_(2)S_(5) were enhanced by introducing the different amounts of Li_(2)O additives.65Li_(2)S–30P_(2)S_(5)–1%Li_(2)O delivered the highest conductivity,while 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O showed the best moisture stability and improved lithium compatibility.Solid-state batteries using 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O electrolyte and high-voltage LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) cathode exhibited low initial discharge capacity(100 mAh·g^(-1))and Coulombic efficiency(69%).Li_(3)InCl_(6) electrolytes were introduced both in the cathode mixture to replace sulfide electrolyte and in the interface layer to improve the cathode compatibility for the solid-state batteries,showing enhanced discharge capacity(175 mAh·g^(-1))and improved initial Coulombic efficiency(86%).Moreover,it also exhibited good performance at-20℃.
基金National Natural Science Foundation of China,Grant/Award Number:22179005National Key Research and Development Program of China,Grant/Award Number:2018YFC1900102。
文摘The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attention has been focused on modulating and developing catalyst interface contact engineering between a carbon substrate and dispersed metal.Here,a highly dispersed ultrafine ruthenium(Ru)NP strategy by double spatial confinement is proposed,that is,incorporating directed growth of metal–organic framework crystals into a bacterial cellulose templating substrate to integrate their respective merits as an excellent electrocatalytic cathode catalyst for a quasi-solid-state Li–O_(2) battery.The porous carbon matrix with highly dispersed ultrafine Ru NPs is well designed and used as cathode catalysts in a Li–O_(2) battery,demonstrating a high discharge areal capacity of 6.82 mAh cm^(–2) at 0.02 mA cm^(–2),a high-rate capability of 4.93 mAh cm^(–2) at 0.2 mA cm^(–2),and stable discharge/charge cycling for up to 500 cycles(2000 h)with low overpotentials of~1.4 V.This fundamental understanding of the structure–performance relationship demonstrates a new and promising approach to optimize highly efficient cathode catalysts for solid-state Li–O_(2) batteries.
基金financial support from National Natural Science Foundation of China(Nos.51772127,51772131,51802119)Taishan Scholars(No.ts201712050)Major Program of Shandong Province Natural Science Foundation(No.ZR2018ZB0317)。
文摘Herein,we first report one-step synthesis of uniform Mo2 C microflowers(MCMFs)from low-cost precursors via industrialized solid-state strategy.With fine optimization in precursor ratio and pyrolysis temperatures,the as-fabricated MCMFs are assembled well with interconnected single-crystalline nanosheet subunits.More encouragingly,the resultant MCMFs are further highlighted as a competitive anode with robust and long-duration lithium-storage behaviors towards high-performance Li-ion batteries.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFB0100300 and 2016YFB0100100)the National Basic Research Program of China(Grant No.2014CB932300)+2 种基金the Beijing Municipal Science&Technology Commission,China(Grant No.D171100005517001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010000)the National Natural Science Foundation of China(Grant No.51502334)
文摘A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6× 10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solidstate electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.
基金supported by the National Natural Science Foundation of China(52203066,51973157,61904123,51873152)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the Science and Technology Plans of Tianjin(19PTSYJC00010)the Tianjin Research Innovation Project for Postgraduate Students(2021YJSB234)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.
基金supported by Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2022-K15)China University of Mining&Technology(Beijing),Beijing National Laboratory for Condensed Matter Physics,and the National Natural Science Foundation of China(No.51672029 and 51372271)the Spanish Ministry of Science,Innovation to the project MAT2017-84496-R.CAL acknowledges ANPCyT,UNSL for financial support(projects PICT2017-1842,PROICO 2-2016),Argentine.
文摘The recovery and utilization of carbon dioxide(CO_(2))is the key to achieve the targets of peak carbon dioxide emissions and carbon neutrality.The Na-CO_(2)battery made with cheap alkali metal sodium and greenhouse gas CO_(2)is an effective strategy to consume CO_(2)and store clean renewable energy.However,the liquid electrolyte volatilization in the open battery system and inevitable dendrite growth restrict the application of Na-CO_(2)batteries.In this work,magnesium-doped Na_(3)Zr_(2)Si_(2)PO_(12)(NZSP)was studied as a solid electrolyte for solid-state Na-CO_(2)batteries.The ionic conductivity of Na_(3.2)Zr_(1.9)Mg_(0.1)Si_(2)PO_(12)reaches 1.16 mS cm^(−1)at room temperature by replacing Zr ions in Na_(3.2)Zr_(1.9)Mg_(0.1)Si_(2)PO_(12)with Mg ions,and the structural changes are analyzed by neutron powder diffraction.The composite electrolyte consisting of highly conductive Na_(3.2)Zr_(1.9)Mg_(0.1)Si_(2)PO_(12)and high processability poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)is utilized for the first time to assemble a solid-state Na-CO_(2)battery.The cell shows a full discharge capacity of 7720 mAh g^(−1)at 200 mA g^(−1).The middle gap voltage is lower than 2 V after 120 cycles at 200 mA g^(−1)and at a cut-off capacity of 500 mAh g^(−1).This work demonstrates a promising strategy to design high-performance solid-state Na-CO_(2)batteries.
基金the support from the National Natural Science Foundation of China (Nos.U2001220 and 51902223)the Haihe Laboratory of Sustainable Chemical Transformations+2 种基金the Fundamental Research Funds for the Central Universitiesthe National Key Research and Development Program of China (Nos.2021YFF0500600 and 2019YFE0118800)the Natural Science Foundation of Tianjin (No.20JCYBJC00850)
文摘Solid-state batteries(SSBs)have been considered the most promising technology because of their superior energy density and safety.Among all the solid-state electrolytes(SEs),Li_(7) La_(3) Zr_(2) O_(12)(LLZO)with high ionic conductivity(3×10^(−4) S/cm)has been widely investigated.However,its large-scale production in ambient air faces a challenge.After air exposure,the generated Li_(2)CO_(3) layer deteriorates the ionic conductivity and interfacial wettability,thus greatly compromising the electrochemical performance of SSBs.Many works aim to eliminate this layer to recover the pristine LLZO surface.Unfor-tunately,few articles have emphasized the merits of Li_(2)CO_(3).In this review,we focus on the two-sidedness of Li_(2)CO_(3).We discuss the various characteristics of Li_(2)CO_(3) that can be used and recapitulate the strategies that utilize Li_(2)CO_(3).Insulating Li_(2)CO_(3) is no longer an obstacle but an opportunity for realizing intimate interfacial contact,high air stability,and outstand-ing electrochemical performance.This review aims to off er insightful guidelines for treating air-induced Li_(2)CO_(3) and lead to developing the enhanced air stability and electrochemical performance of LLZO.
基金the National Natural Science Foundation of China (Nos.U1732111 and 21676241)“The Recruitment Program of Global Youth Experts” from the Chinese government+2 种基金the “Hundred Talents Program” of Zhejiang UniversityHubei Natural Science Foundation of China (No.2018CFB531)Self-determined Research Funds of CCNU from Colleges’ Basic Research and Operation of MOE (No.CCNU18TS045)。
文摘Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life.So all kinds of catalysts have been studied on the cathode.Compared to heterogeneous solid catalysts,soluble catalysts achieve faster and more effective transport of electrons by reversible redox pairs.Here,we first report ruthenocene(Ruc) as a mobile redox mediator in a Li-O2 battery.0.01 mol/L Ruc in the electrolyte effectively reduces the charging voltage by 610 mV.Additionally,Ruc greatly increases the cycling life by four-fold(up to 83 cycles) with a simple ketjen black(KB) cathode.The results of SEM,XPS and XRD confirm that less discharge product residue accumulated after recharge.To verify the reaction mechanisms of the mediato r,free energy profiles of the possible reaction pathways based on DFT are provided.
基金supported by the National Natural Science Foundations of China (Grants:21871028,21771024)。
文摘Combining nanomaterials with complementary properties in a well-designed structure is an effective tactic to exploit multifunctional, high-performance materials for the energy conversion and storage. Nonprecious metal catalysts, such as cobalt oxide, with superior activity and excellent stability to other catalysts are widely desired. Nevertheless, the performance of CoO nanoparticles as an electrode material were significantly limit for its inferior conductivity, dissolution, and high cohesion. Herein, we grow ultrafine cobalt monoxide to decorate the interlayer and surface of the Ti3C2 Txnanosheets via a hydrothermal method companied by calcination. The layered MXenes act as the underlying conductive substrate,which not only increase the electron transfer rate at the interface but also greatly improve the electrochemical properties of the nanosized Co O particles by restricting the aggregation of CoO. The resulting CoO/Ti3C2 Txnanomaterial is applied as oxygen electrode for lithium-oxygen battery and achieves more than 160 cycles and first cycle capacity of 16,220 mAh g-1 at 100 mA g-1. This work paves a promising avenue for constructing a bi-functional catalyst by coupling the active component of a transition metal oxide(TMO) with the MXene materials in lithium-oxygen battery.
基金This work was financially supported by the National Natural Science Foundation of China (No.50272012).
文摘Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.
基金supported by National Key R&D Program of China (2016YFB0100500)Special fund of key technology research and development projects (20180201097GX)(20180201099GX)(20180201096GX),Jilin province science and technology department+5 种基金The R&D Program of power batteries with low temperature and high energy,Science and Technology Bureau of Changchun (19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal UniversityGeneral Financial Grant from the China Postdoctoral Science Foundation (Grant 2016M601363)Fundamental Research Funds for the Central Universities (Grant 2412017QD011)Jilin Scientific and Technological Development Program (Grant 20180520143JH)National Natural Science Foundation of China (Grant 21805030)。
文摘Conventional Li-O2 battery is hardly considered as a next-generation flexible electronics thus far,since it is inflexible,bulk,and limited by the absence of the adjustable cell configuration.Here,we report a binder-free and flexible electrode of x wt%MoO2 NPs/CTs(x=6,16,and 28).A cell with 16 wt% MoO2 NPs/CTs displays a good cyclability over 240 cycles with a low overpotential of 0.33 V on the 1st cycle at a constant current density of 0.2 mA cm-2,a considerable rate performance,a superior reversibility associated with the desired formation and degradation of Li2O2,and a high electrochemical stability even under stringent bending and twisting conditions.Our work represents a promising progress in the material development and architecture design of O2 electrode for flexible Li-O2 batteries.
基金sponsored by the National Natural Science Foundation of China(21475021 and 21427807)the Fundamental Research Funds for the Central Universities(2242017 K41023)
文摘Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries.
基金the partial financial support from the National Natural Science Foundation of China (22075171,21805182 and 22179080)。
文摘Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durability as well as inferior electrochemical performance. Herein, in order to improve the safety and durability, a succinonitrile(SN) modified composite SSE is proposed. In this SSE, SN is introduced for eliminating the boundary between ceramic particles, increasing the amorphous region of polymer and ensuring fast ionic transport. Subsequently, the symmetric battery based on the proposed SSE achieves a long cycle life of 3000 h. Moreover, the elaborate cathode interface through the SN participation effectively reduces the barriers to the combination between lithium ions and electrons, facilitating the corresponding electrochemical reactions.As a result, the solid-state Li-O_(2)battery based on this SSE and tuned cathode interface achieves improved electrochemical performance including large specific capacity over 12,000 m Ah g^(-1), enhanced rate capacity as well as stable cycle life of 54 cycles at room temperature. This ingenious design provides a new orientation for the evolution of solid-state Li-O_(2)batteries.
基金supported by the Natural Science Foundation of China(No.21303038)Scientific Research Foundation for the Returned Overseas Chinese Scholars+1 种基金State Education Ministry One Hundred,Talents Program of Anhui ProvinceOpen Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2016004)
文摘As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work.
基金supported by the Recruitment Program of Global Youth Experts of Chinathe Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010401)+1 种基金the Science and Technology Development Program of Jilin Province,China(Grant No.20150623002TC)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20131139)
文摘Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an indepth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the positive electrode distinguish Li-O2 batteries from the conventional Li-ion cells and play a crucial role in the Li-O2 cell's performance (capacity, rate capability, and cycle life). Recent advances in fundamental studies of oxygen reactions in aprotic Li-O2 batteries are reviewed, including the reaction route, kinetics, morphological evolution of Li2O2, and charge transport within Li2O2. Prospects are also provided for future fundamental investigations of Li-O2 chemistry.
基金the National Natural Science Foundation of China (No. 50604018)
文摘LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3(PO4)2 coating forms a thin layer on the surface of the LiNi0.8Co0.2O2 material and a solid solution by interacting with the LiNi0.8Co0.2O2 core material during calcination at 700℃ for 4 h. Charge-discharge experiment results show that the Co3(PO4)2 coating improves the cycling stability of the LiNi0.8Co0.2O2 cathode material. The capacity retention of the pristine LiNi0.8Co0.2O2 cathode after 50 cycles is 83.6%, whereas it is 91.7% in the case of the LiNi0.8Co0.2O2 cathode coated with 1 wt.% Co3(PO4)2. Storage tests of the 4.35 V charged electrode at 60℃ after a month show that the Co3(POg)2-coated sample exhibits good storage properties compared with the pristine sample.