Long-duration conjugate observations by the EISCAT Svalbard Radar (ESR) and the ionosonde at Zhongshan station from the International Polar Year (IPY) during solar minimum conditions are analyzed, with respect to ...Long-duration conjugate observations by the EISCAT Svalbard Radar (ESR) and the ionosonde at Zhongshan station from the International Polar Year (IPY) during solar minimum conditions are analyzed, with respect to variability in the F2-1ayer peak parameters. A comparison between International Reference Ionosphere- 2007 (IRI-2007) and observation data clearly demonstrates good agreement in summer, but greater deviations in winter. The IRI model reproduces the F2 peak parameters dominated by solar photoionization reasonably well, but it does not address the effect of electron precipitation. Hence, the discrepancies become large in the winter auroral ionosphere.展开更多
By about 2030-2040, the Sun will experience a new grand solar minimum. This is evident from multiple studies of quite different characteristics: the phasing of sunspot cycles, the cyclic observations of North Atlantic...By about 2030-2040, the Sun will experience a new grand solar minimum. This is evident from multiple studies of quite different characteristics: the phasing of sunspot cycles, the cyclic observations of North Atlantic behaviour over the past millennium, the cyclic pattern of cosmogenic radionuclides in natural terrestrial archives, the motions of the Sun with respect to the centre of mass, the planetary spin-orbit coupling, the planetary conjunction history and the general planetary-solar-terrestrial interaction. During the previous grand solar minima—i.e. the Sporer Minimum (ca 1440-1460), the Maunder Minimum (ca 1687-1703) and the Dalton Minimum (ca 1809-1821)—the climatic conditions deteriorated into Little Ice Age periods.展开更多
Based on the ionosphere observation data obtained by EISCAT Svalbard Radar (ESR) in solar minimum year-2007, we analyzed diurnal variations of F2-peak electron density (NmF2) in four seasons under disturbed and quiet ...Based on the ionosphere observation data obtained by EISCAT Svalbard Radar (ESR) in solar minimum year-2007, we analyzed diurnal variations of F2-peak electron density (NmF2) in four seasons under disturbed and quiet geomagnetic conditions. It indicated that the soft precipitation electron had an evident effect on the NmF2 increase at magnetic noon in spring, summer and autumn and the electron precipitation effects were prominent in winter. The comparison between the IRI-2007 model and the observation exhibited that the IRI (International Reference Ionosphere) model had a better NmF2 prediction when the photoionization was dominant during the polar day, but worse when the electron precipitation was dominant during the polar night. We showed that the electrons in lower energy band decreased when the geomagnetic disturbance went greater, which resulted in the lower NmF2. By analyzing the spectrum of precipitation electron under different geomagnetic conditions, it was found that this phenomenon was induced by the energy flux enhancement of precipitation electron of low energy.展开更多
Four extreme ultraviolet(EUV)solar radiation proxies(Magnesium II core-to-wing ratio(MgII),Lymanαflux(Fα),10.7-cm solar radio flux(F10.7),and sunspot number(Rz))were analyzed during the last four consecutive solar a...Four extreme ultraviolet(EUV)solar radiation proxies(Magnesium II core-to-wing ratio(MgII),Lymanαflux(Fα),10.7-cm solar radio flux(F10.7),and sunspot number(Rz))were analyzed during the last four consecutive solar activity minima to investigate how they differ during minimum periods and how well they represent solar EUV radiation.Their variability within each minimum and between minima was compared by considering monthly means.A comparison was also made of their role in filtering the effect of solar activity from the critical frequency of the ionospheric F2 layer,foF2,which at mid to low latitudes depends mainly on EUV solar radiation.The last two solar cycles showed unusually low EUV radiation levels according to the four proxies.Regarding the connection between the EUV“true”variation and that of solar proxies,according to the foF2 filtering analysis,MgII and Fαbehaved in a more stable and suitable way,whereas Rz and F10.7 could be overestimating EUV levels during the last two minima,implying they would both underestimate the inter-minima difference of EUV when compared with the first two minima.展开更多
This paper investigates the performance of the latest International Reference Ionosphere model to predict the critical frequency at low latitudes in the African region. The variability of the critical frequency of the...This paper investigates the performance of the latest International Reference Ionosphere model to predict the critical frequency at low latitudes in the African region. The variability of the critical frequency of the F2 layer of the ionosphere (foF2) is studied for the different seasons of the phase minimum of solar cycle 22 during quiet geomagnetic activity at the Ouagadougou station. The data used are those provided by the ionosonde and the predictions of the two subprograms: International Radio Consultative Committee (CCIR) and International Radio-Scientific Union (URSI) of the 2016 version of the International Reference Ionosphere model. This study shows that, in general, URSI and CCIR of the IRI-2016 model are able to reproduce fairly well the variability of the critical frequency of the F2 layer of the ionosphere at low latitudes during the phase minimum at the Ouagadougou station. However, the model shows an almost homogeneous overestimation of the foF2 during the four seasons studied. The good response is observed between 0700 TL and 1900 TL for the available data. The agreement between the subroutine responses and the observed results is between reasonable and poor. The best match state response is obtained in winter with the CCIR subroutine. These results show that there is a need to improve both CCIR and URSI subroutines of the IRI-2016 model in low latitudes in the African region.展开更多
The sunspot number is becoming an increasingly insufficiently reliable parameter for the determination of the time of minimum of a solar cycle during the prolonged and deep minimum of the 23rd solar cycle. Moreover, t...The sunspot number is becoming an increasingly insufficiently reliable parameter for the determination of the time of minimum of a solar cycle during the prolonged and deep minimum of the 23rd solar cycle. Moreover, the sunspot number does not quantitatively reflect physical processes and is a practically conventional qualitative “noisy” parameter. Introduction of an additional criterion for the determination of the time of minimum of a solar cycle is becoming particularly topical due to the upcoming common descent of the level of the 2-secular cycle, when the amplitude of sunspot activity variation will sequentially decrease during several subsequent cycles (after the 23rd cycle). We propose the adoption of the smoothed minimal level of the total solar irradiance (TSI) as an additional physically justified criterion for the determination of the time of minimum of a solar cycle during the minimum of sunspot activity. The minimal level of the monthly average values of the TSI smoothed for 13 months when the last two of its values exceed the preceding value at the point of minimum will additionally indicate the time of minimum of a cycle. The additional criterion has been successfully used for the determination of the time of minima of the preceding 21st and 22nd cycles.展开更多
Detailed solar Angular Momentum (AM) graphs produced from the Jet Propulsion Laboratory (JPL) DE405 ephemeris display cyclic perturbations that show a very strong correlation with prior solar activity slowdowns. These...Detailed solar Angular Momentum (AM) graphs produced from the Jet Propulsion Laboratory (JPL) DE405 ephemeris display cyclic perturbations that show a very strong correlation with prior solar activity slowdowns. These same AM perturbations also occur simultaneously with known solar path changes about the Solar System Barycentre (SSB). The AM perturbations can be measured and quantified allowing analysis of past solar cycle modulations along with the 11,500 year solar proxy records (14C & 10Be). The detailed AM information also displays a recurring wave of modulation that aligns very closely with the observed sunspot record since 1650. The AM perturbation and modulation is a direct product of the outer gas giants (Uranus & Neptune). This information gives the opportunity to predict future grand minima along with normal solar cycle strength with some confidence. A proposed mechanical link between solar activity and planetary influence via a discrepancy found in solar/planet AM along with current AM perturbations indicate solar cycle 24 & 25 will be heavily reduced in sunspot activity resembling a similar pattern to solar cycles 5 & 6 during the Dalton Minimum (1790-1830).展开更多
Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during t...Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during the outer minima (descending phases) of the solar cycles and can therefore influence all of humanity and its technology. These disturbances lead to socio-economic consequences requiring a precise knowledge of the climate variability. Using a statistical approach, we evaluate the response of the Earth’s magnetosphere to the High-Speed Solar Winds (HSSW) forcing during the peaks of the last five outer minima. To do so, 1UA data of solar wind and magnetic field parameters were extracted from OMNI browser. Analysis of the energetic solar plasma particles shows that strong geomagnetic field variations can occur even in the absence of large solar disturbances. While the normalized reconnection rate was estimated to be ~21% of the total variance of the magnetospheric variables, the upstream of the magnetic cavity was perturbed 80% of the time with large energies recorded. As a result, Earth’s magnetosphere becomes denser (i.e., more drag), which is a problem for spacecraft. Thus, the coupled solar wind-magnetosphere system follows scale-invariant dynamics and is in a state far from equilibrium. Our analysis provides insight into the main cause of geomagnetic storms with more than 97% of HSSW imposed in the range 300 - 850 km/s. These high-speeds lead to auroras that can disrupt electrical and communication systems.展开更多
太阳活动低年夏季,低纬电离层F区场向不规则体表现出与太阳活动高年和其他季节明显不同的特征.本文利用我国三亚站(18.4°N,109.6°E,地磁倾角纬度dip latitude 12.8°N)VHF雷达、电离层测高仪、GPS闪烁监测仪和美国C/NOFS...太阳活动低年夏季,低纬电离层F区场向不规则体表现出与太阳活动高年和其他季节明显不同的特征.本文利用我国三亚站(18.4°N,109.6°E,地磁倾角纬度dip latitude 12.8°N)VHF雷达、电离层测高仪、GPS闪烁监测仪和美国C/NOFS卫星观测数据,研究了太阳活动低年夏季我国低纬电离层F区场向不规则体的基本特征.分析发现无论磁静日还是磁扰日,夏季电离层F区不规则体回波主要出现于地方时午夜以后,回波出现的时间较短,高度范围较小,伴随着扩展F出现,但没有同时段的L波段电离层闪烁.太阳活动低年夏季午夜后的低纬电离层F区不规则体回波,可能并不总是与赤道等离子体泡沿磁力线向低纬地区的延伸相关,而可能由本地Es等扰动过程引起.展开更多
基金supported by the youth fund of the State Oceanic Administration, People's Republic of China (Grant no.2010614)the Polar Strategic Research Foundation of China (Grant no.20100201)+2 种基金the Public Science and Technology Research Funds Projects of Ocean (Grant no.201005017)the National Natural Science Foundation of China (Grant no.40874082,40890164)the National Basic Research Program of China (Grant no.2010CB950503-06)
文摘Long-duration conjugate observations by the EISCAT Svalbard Radar (ESR) and the ionosonde at Zhongshan station from the International Polar Year (IPY) during solar minimum conditions are analyzed, with respect to variability in the F2-1ayer peak parameters. A comparison between International Reference Ionosphere- 2007 (IRI-2007) and observation data clearly demonstrates good agreement in summer, but greater deviations in winter. The IRI model reproduces the F2 peak parameters dominated by solar photoionization reasonably well, but it does not address the effect of electron precipitation. Hence, the discrepancies become large in the winter auroral ionosphere.
文摘By about 2030-2040, the Sun will experience a new grand solar minimum. This is evident from multiple studies of quite different characteristics: the phasing of sunspot cycles, the cyclic observations of North Atlantic behaviour over the past millennium, the cyclic pattern of cosmogenic radionuclides in natural terrestrial archives, the motions of the Sun with respect to the centre of mass, the planetary spin-orbit coupling, the planetary conjunction history and the general planetary-solar-terrestrial interaction. During the previous grand solar minima—i.e. the Sporer Minimum (ca 1440-1460), the Maunder Minimum (ca 1687-1703) and the Dalton Minimum (ca 1809-1821)—the climatic conditions deteriorated into Little Ice Age periods.
基金supported by the National Natural Science Foundation of China (Grant No. 41104105)the Youth Fund of State Oceanic Administration of China (Grant No. 2010614)+2 种基金the Polar Strategic Research Foundation of China (Grant No. 20100201)Public Science and Technology Research Funds Projects of Ocean of China (Grant No. 201005017)the National Basic Research Program of China ("973" Program) (Grant No. 2010CB950503-06)
文摘Based on the ionosphere observation data obtained by EISCAT Svalbard Radar (ESR) in solar minimum year-2007, we analyzed diurnal variations of F2-peak electron density (NmF2) in four seasons under disturbed and quiet geomagnetic conditions. It indicated that the soft precipitation electron had an evident effect on the NmF2 increase at magnetic noon in spring, summer and autumn and the electron precipitation effects were prominent in winter. The comparison between the IRI-2007 model and the observation exhibited that the IRI (International Reference Ionosphere) model had a better NmF2 prediction when the photoionization was dominant during the polar day, but worse when the electron precipitation was dominant during the polar night. We showed that the electrons in lower energy band decreased when the geomagnetic disturbance went greater, which resulted in the lower NmF2. By analyzing the spectrum of precipitation electron under different geomagnetic conditions, it was found that this phenomenon was induced by the energy flux enhancement of precipitation electron of low energy.
基金Research Project Numbers PIUNT E642 and PIP 2957supported by National Science Foundation Grant Number AGS-2152365
文摘Four extreme ultraviolet(EUV)solar radiation proxies(Magnesium II core-to-wing ratio(MgII),Lymanαflux(Fα),10.7-cm solar radio flux(F10.7),and sunspot number(Rz))were analyzed during the last four consecutive solar activity minima to investigate how they differ during minimum periods and how well they represent solar EUV radiation.Their variability within each minimum and between minima was compared by considering monthly means.A comparison was also made of their role in filtering the effect of solar activity from the critical frequency of the ionospheric F2 layer,foF2,which at mid to low latitudes depends mainly on EUV solar radiation.The last two solar cycles showed unusually low EUV radiation levels according to the four proxies.Regarding the connection between the EUV“true”variation and that of solar proxies,according to the foF2 filtering analysis,MgII and Fαbehaved in a more stable and suitable way,whereas Rz and F10.7 could be overestimating EUV levels during the last two minima,implying they would both underestimate the inter-minima difference of EUV when compared with the first two minima.
文摘This paper investigates the performance of the latest International Reference Ionosphere model to predict the critical frequency at low latitudes in the African region. The variability of the critical frequency of the F2 layer of the ionosphere (foF2) is studied for the different seasons of the phase minimum of solar cycle 22 during quiet geomagnetic activity at the Ouagadougou station. The data used are those provided by the ionosonde and the predictions of the two subprograms: International Radio Consultative Committee (CCIR) and International Radio-Scientific Union (URSI) of the 2016 version of the International Reference Ionosphere model. This study shows that, in general, URSI and CCIR of the IRI-2016 model are able to reproduce fairly well the variability of the critical frequency of the F2 layer of the ionosphere at low latitudes during the phase minimum at the Ouagadougou station. However, the model shows an almost homogeneous overestimation of the foF2 during the four seasons studied. The good response is observed between 0700 TL and 1900 TL for the available data. The agreement between the subroutine responses and the observed results is between reasonable and poor. The best match state response is obtained in winter with the CCIR subroutine. These results show that there is a need to improve both CCIR and URSI subroutines of the IRI-2016 model in low latitudes in the African region.
文摘The sunspot number is becoming an increasingly insufficiently reliable parameter for the determination of the time of minimum of a solar cycle during the prolonged and deep minimum of the 23rd solar cycle. Moreover, the sunspot number does not quantitatively reflect physical processes and is a practically conventional qualitative “noisy” parameter. Introduction of an additional criterion for the determination of the time of minimum of a solar cycle is becoming particularly topical due to the upcoming common descent of the level of the 2-secular cycle, when the amplitude of sunspot activity variation will sequentially decrease during several subsequent cycles (after the 23rd cycle). We propose the adoption of the smoothed minimal level of the total solar irradiance (TSI) as an additional physically justified criterion for the determination of the time of minimum of a solar cycle during the minimum of sunspot activity. The minimal level of the monthly average values of the TSI smoothed for 13 months when the last two of its values exceed the preceding value at the point of minimum will additionally indicate the time of minimum of a cycle. The additional criterion has been successfully used for the determination of the time of minima of the preceding 21st and 22nd cycles.
文摘Detailed solar Angular Momentum (AM) graphs produced from the Jet Propulsion Laboratory (JPL) DE405 ephemeris display cyclic perturbations that show a very strong correlation with prior solar activity slowdowns. These same AM perturbations also occur simultaneously with known solar path changes about the Solar System Barycentre (SSB). The AM perturbations can be measured and quantified allowing analysis of past solar cycle modulations along with the 11,500 year solar proxy records (14C & 10Be). The detailed AM information also displays a recurring wave of modulation that aligns very closely with the observed sunspot record since 1650. The AM perturbation and modulation is a direct product of the outer gas giants (Uranus & Neptune). This information gives the opportunity to predict future grand minima along with normal solar cycle strength with some confidence. A proposed mechanical link between solar activity and planetary influence via a discrepancy found in solar/planet AM along with current AM perturbations indicate solar cycle 24 & 25 will be heavily reduced in sunspot activity resembling a similar pattern to solar cycles 5 & 6 during the Dalton Minimum (1790-1830).
文摘Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during the outer minima (descending phases) of the solar cycles and can therefore influence all of humanity and its technology. These disturbances lead to socio-economic consequences requiring a precise knowledge of the climate variability. Using a statistical approach, we evaluate the response of the Earth’s magnetosphere to the High-Speed Solar Winds (HSSW) forcing during the peaks of the last five outer minima. To do so, 1UA data of solar wind and magnetic field parameters were extracted from OMNI browser. Analysis of the energetic solar plasma particles shows that strong geomagnetic field variations can occur even in the absence of large solar disturbances. While the normalized reconnection rate was estimated to be ~21% of the total variance of the magnetospheric variables, the upstream of the magnetic cavity was perturbed 80% of the time with large energies recorded. As a result, Earth’s magnetosphere becomes denser (i.e., more drag), which is a problem for spacecraft. Thus, the coupled solar wind-magnetosphere system follows scale-invariant dynamics and is in a state far from equilibrium. Our analysis provides insight into the main cause of geomagnetic storms with more than 97% of HSSW imposed in the range 300 - 850 km/s. These high-speeds lead to auroras that can disrupt electrical and communication systems.
文摘太阳活动低年夏季,低纬电离层F区场向不规则体表现出与太阳活动高年和其他季节明显不同的特征.本文利用我国三亚站(18.4°N,109.6°E,地磁倾角纬度dip latitude 12.8°N)VHF雷达、电离层测高仪、GPS闪烁监测仪和美国C/NOFS卫星观测数据,研究了太阳活动低年夏季我国低纬电离层F区场向不规则体的基本特征.分析发现无论磁静日还是磁扰日,夏季电离层F区不规则体回波主要出现于地方时午夜以后,回波出现的时间较短,高度范围较小,伴随着扩展F出现,但没有同时段的L波段电离层闪烁.太阳活动低年夏季午夜后的低纬电离层F区不规则体回波,可能并不总是与赤道等离子体泡沿磁力线向低纬地区的延伸相关,而可能由本地Es等扰动过程引起.