期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
On the Occurrence of Different Classes of Solar Flares during the Solar Cycles 23 and 24
1
作者 Longo Wilfried Sanon Wendpuiré Ousmane Compaoré +1 位作者 Somaïla Koala Jean Louis Zerbo 《Journal of High Energy Physics, Gravitation and Cosmology》 2025年第1期28-38,共11页
In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a to... In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a total of 19,126 solar flares were observed regardless the class: 3548 flares in solar cycle 23 (SC23) and 15,668 flares in solar cycle 24 (SC24). Our findings show that the cycle 23 has observed the highest occurrences of M-class and X-class flares, whereas cycle 24 has pointed out a predominance of B-class and C-class flares throughout its different phases. The results indicate that the cycle 23 was magnetically more intense than cycle 24, leading to more powerful solar flares and more frequent geomagnetic storms, capable of generating significant electromagnetic emissions that can affect satellites and GPS signals. The decrease in intense solar flares during cycle 24 compared to cycle 23 reflects an evolution in solar activity patterns over time. 展开更多
关键词 solar Flare solar cycle solar cycle Phase solar Flare Class OCCURRENCE
在线阅读 下载PDF
Hemispheric prediction of solar cycles 25 and 26 from multivariate sunspot time-series data via Informer models 被引量:1
2
作者 Jie Cao Tingting Xu +6 位作者 Linhua Deng Xueliang Zhou Xinhua Zhao Nanbin Xiang Fuyu Li Miao Wan Weihong Zhou 《Astronomical Techniques and Instruments》 2025年第1期16-26,共11页
Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learnin... Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learning models and long-term observational records of sunspot relative numbers are essential for solar cycle forecasting.Using the multivariate time series of monthly sunspot relative numbers provided by the National Astronomical Observatory of Japan and two Informer-based models,we forecast the amplitude and timing of solar cycles 25 and 26.The main results are as follows:(1)The maximum amplitude of solar cycle 25 is higher than the previous solar cycle 24 and the following solar cycle 26,suggesting that the long-term oscillatory variation of sunspot magnetic fields is related to the roughly centennial Gleissberg cyclicity.(2)Solar cycles 25 and 26 exhibit a pronounced Gnevyshev gap,which might be caused by two non-coincident peaks resulting from solar magnetic flux transported by meridional circulation and mid-latitude diffusion in the convection zone.(3)Hemispheric prediction of sunspot activity reveals a significant northsouth asynchrony,with activity level of the Sun being more intense in the southern hemisphere.These results are consistent with expectations derived from precursor methods and dynamo theories,and further provide evidence for internal changes in solar magnetic field during the decay of the Modern Maximum. 展开更多
关键词 solar magnetic fields solar cycle Deep learning
在线阅读 下载PDF
Solar cycles during the seventeenth century revealed by equatorial aurora records
3
作者 Yong Wei LiMei Yan 《Earth and Planetary Physics》 EI CAS 2025年第1期182-187,共6页
Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while al... Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses. 展开更多
关键词 solar cycle Maunder Minimum solar activity red equatorial aurora West Pacific geomagnetic anomaly
在线阅读 下载PDF
Statistical Study of the Occurrence of Coronal Mass Ejections (CMEs) from 1996 to 2018 (Solar Cycles 23-24) 被引量:1
4
作者 Salfo Kaboré Abdoul Kader Segda +1 位作者 Aristide Marie Frédéric Gyébré Frédéric Ouattara 《Journal of Modern Physics》 2024年第12期2238-2255,共18页
The objective of this article was to carry out a statistical study of the occurrences of CMEs from solar cycles 23 and 24 and to deduce interpretations as a contribution to a greater understanding of heliosphere dynam... The objective of this article was to carry out a statistical study of the occurrences of CMEs from solar cycles 23 and 24 and to deduce interpretations as a contribution to a greater understanding of heliosphere dynamics. Thus, from the statistical examination of the occurrences according to the phases it appeared that solar cycle 23 (SC23) counted 13207 occurrences of CMEs while 16510 were counted for solar cycle 24 (SC24). These occurrences of CMEs are correlated to the sunspot cycle because in each of these cycles we would note the predominance of the phase maximum (1478 for SC23 and 2338 for SC24) over the ascending phases (550 for SC23 and 1559 for the SC24) and descending (1197 for the SC23 and 1178 for the SC24) and these predominate on the minimum phase (206 for the SC23 and 834 for the SC24). However, the percentages per phase in each cycle show that SC23 was only predominant over SC24 at the maximum phase (43.08% for SC23 and 39.57% for SC24). From this correlation, some authors therefore suggest that the toroidal magnetic field would be the cause of the ejections of these CMEs. The annual statistical examination confirms the correlation with the sunspot cycle but nevertheless reveals in the descending phase of SC23 two unusual peaks in 2005 and 2007 and a drop-in sunspot activity of 42% from SC23 to SC24 while that we would note an increase in the activity of CME occurrences of 36% at SC24, thus suggesting that CMEs can occur without the toroidal magnetic field being the cause, particularly from the coronal holes. The seasonal statistical examination shows for its part that out of the total of 29717 occurrences of CMEs of the two cycles that spring (28%) was the most active than summer (25%) and summer over autumn (24%) and finally autumn over winter (23%) thus revealing that: The ascending phase of the cycle was only the most active during the winter seasons in spring and the descending phase only during the rest of the seasons. Finally, the monthly statistical examination of the occurrences of CMEs corroborates the seasonal statistical examination by the presence of two maximum peaks (May and October) and two minimum peaks (February and August). 展开更多
关键词 CMES OCCURRENCE solar cycle Phase of the solar cycle SEASONS MONTHS
在线阅读 下载PDF
Statistical study on great geomagnetic storms during solar cycle 23
5
作者 Qi Li Yufen Gao +2 位作者 Peiyu Zhu Huaran Chen Xiuling Zhang 《Earthquake Science》 CSCD 2011年第4期365-372,共8页
Characteristics of great geomagnetic storms during solar cycle 23 were statistically investigated. Firstly, we focused on the uniqueness of solar cycle 23 by analyzing both the great storm number and sunspot number fr... Characteristics of great geomagnetic storms during solar cycle 23 were statistically investigated. Firstly, we focused on the uniqueness of solar cycle 23 by analyzing both the great storm number and sunspot number from 1957 to 2008. It was found that the relationship between the sunspot number and great storm number weakened as the activity of the storms strengthened. There was no obvious relationship between the annual sunspot number and great storm number with Dst≤-300 nT. Secondly, we studied the relationship between the peak Dst and peak Bz in detail. It was found that the condition Bz〈-10 nT is not necessary for storms with Dst≤-100 nT, but seems necessary for storms with Dst≤-150 nT. The duration for Bz≤-10 nT has no direct relationship with the giant storm. The correlation coefficient between the Dst peak and Bz peak for the 89 storms studied is 0.81. After removing the effect of solar wind dynamic pressure on the Dst peak, we obtained a better correlation coefficient of 0.86. We also found the difference between the Dst peak and the corrected Dst peak was proportional to the Dst peak. 展开更多
关键词 geomagnetic storms solar cycle 23 sunspot number 4.5 solar cycles peak Dst andpeak Bz
在线阅读 下载PDF
Anomalous pattern of ocean heat content during different phases of the solar cycle in the tropical Pacific 被引量:6
6
作者 HUO Wen-Juan XIAO Zi-Niu 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第1期9-16,共8页
Solar radiation is a forcing of the climate system with a quasi-11-year period.As a quasi-period forcing,the influence of the phase of the solar cycle on the ocean system is an interesting topic of study.In this paper... Solar radiation is a forcing of the climate system with a quasi-11-year period.As a quasi-period forcing,the influence of the phase of the solar cycle on the ocean system is an interesting topic of study.In this paper,the authors investigate a particular feature,the ocean heat content(OHC)anomaly,in different phases of the total solar irradiance(TSI) cycle.The results show that almost opposite spatial patterns appear in the tropical Pacific during the ascending and declining phases of the TSI cycle.Further analysis reveals the presence of the quasi-decadal(11-year) solar signal in the SST,OHC and surface zonal wind anomaly field over the tropical Pacific with a high level of statistical confidence(95%).It is noted that the maximum centers of the ocean temperature anomaly are trapped in the upper ocean above the main pycnocline,in which the variations of OHC are related closely with zonal wind and ocean currents. 展开更多
关键词 Ocean heat content anomaly total solar irradiance solar cycle tropical Pacific
在线阅读 下载PDF
Predicting the 25th solar cycle using deep learning methods based on sunspot area data 被引量:2
7
作者 Qiang Li Miao Wan +2 位作者 Shu-Guang Zeng Sheng Zheng Lin-Hua Deng 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第7期290-298,共9页
It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the sol... It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-shortterm memory(LSTM) and neural network autoregression(NNAR) deep learning methods to predict the upcoming 25 th solar cycle using the sunspot area(SSA) data during the period of May 1874 to December2020. Our results show that the 25 th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115±401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value. 展开更多
关键词 Sun:activity Sun:solar cycle prediction Sun:sunspot area Method:deep neural network
在线阅读 下载PDF
Prediction verification of solar cycles 18–24 and a preliminary prediction of the maximum amplitude of solar cycle 25 based on the Precursor Method 被引量:2
8
作者 Juan Miao Xin Wang +1 位作者 Ting-Ling Ren Zhi-Tao Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第1期27-34,共8页
Predictions of the strength of solar cycles are important and are necessary for planning long-term missions.A new solar cycle 25 is coming soon,and the amplitude is needed for space weather operators.Some predictions ... Predictions of the strength of solar cycles are important and are necessary for planning long-term missions.A new solar cycle 25 is coming soon,and the amplitude is needed for space weather operators.Some predictions have been made using different methods and the values are drastically different.However,since 2015 July 1,the original sunspot number data have been entirely replaced by the Version 2.0 data series,and the sunspot number values have changed greatly.In this paper,using Version 2 smoothed sunspot numbers and aa indices,we verify the predictions for cycles 18-24 based on Ohl’s Precursor Method.Then a similar-cycles method is used to evaluate the aa minimum of 9.7(±1.1)near the start of cycle 25 and based on the linear regression relationship between sunspot maxima and aa minima,our predicted Version 2maximum sunspot number for cycle 25 is 121.5(±32.9). 展开更多
关键词 solar cycle SUNSPOT geomagnetic aa indices
在线阅读 下载PDF
Solar cycle variations in equatorial ionospheric zonal electric fields near sunrise 被引量:1
9
作者 JunJie Chen WenBin Wang +1 位作者 JiuHou Lei Tong Dang 《Earth and Planetary Physics》 EI CSCD 2023年第3期378-388,共11页
In this study,we investigate the solar cycle dependence of the sunrise ionospheric zonal electric fields at the equator under geomagnetically quiet conditions.Simulations using the Thermosphere–Ionosphere–Electrodyn... In this study,we investigate the solar cycle dependence of the sunrise ionospheric zonal electric fields at the equator under geomagnetically quiet conditions.Simulations using the Thermosphere–Ionosphere–Electrodynamics General Circulation Model(TIEGCM)reveal that the equatorial eastward electric field at sunrise decreases with the increase in solar activity,independent of longitude,season,and lower atmospheric tides.The solar cycle dependence of the sunrise zonal electric field is mainly related to the zonal wind dynamo.Moreover,this solar cycle dependence of sunrise electric fields at the equator is dominated by the corresponding variation in the F-region dynamo because the response of conductivity and neutral winds near sunrise to increasing solar flux is stronger in the F-region than in the E-region,although the sunrise eastward enhancement of electric fields is mainly driven by the E-region zonal wind dynamo.Specifically,the westward gradient of low-latitude F-region neutral winds near the dawn terminator tends to produce westward electric fields in the equatorial region that are more pronounced at solar maximum,whereas the midlatitude E-region dynamo induces an eastward enhancement of sunrise electric fields at the equator that decreases slightly with increasing solar activity.This study also reveals that the reason the eastward enhancement of equatorial zonal electric fields near dawn and dusk terminators show opposite solar cycle dependence is because of their different generation mechanisms. 展开更多
关键词 IONOSPHERE ELECTRODYNAMICS sunrise enhancement solar cycle dependence
在线阅读 下载PDF
South Atlantic Anomaly Seasonal Seismicity during Two Solar Cycles 被引量:3
10
作者 Marilia Hagen Anibal Azevedo 《Open Journal of Earthquake Research》 2020年第4期307-322,共16页
The aim of this paper is to investigate the effects of Solar cycles and season fluctuations on earthquakes, in a location named South Atlantic anomaly. The area used herein is delimited 0N, ?50S, 40E, ?90W, and is the... The aim of this paper is to investigate the effects of Solar cycles and season fluctuations on earthquakes, in a location named South Atlantic anomaly. The area used herein is delimited 0N, ?50S, 40E, ?90W, and is the region with the Earth’s lowest magnetic field, which allows a higher number of ionized particles to reach the ionosphere. The period chosen is 1996-2018, comprising two Solar Cycles and the respective solar maxima in 2000 and 2014. The first results pointed out that occurrences of swarm location depending from the depth search. Shallow earthquakes developed swarms near the shorelines and deep depth inland. A mathematical model was developed to statistically evaluate the changes in the earthquakes increases. The outcome resolutions showed Summer and Fall are the most important seasons for tremors in this region. The period analyzed have an extended solar minimum occurred 2003-2010, we analyzed the evolution of earthquakes occurrences under the South Atlantic anomaly. 展开更多
关键词 South Atlantic Anomaly solar cycles SEASONS EARTHQUAKES
在线阅读 下载PDF
Comparative Study of the Geomagnetic Activity Effect on foF2 Variation as Defined by the Two Classification Methods at Dakar Station over Solar Cycle Phases
11
作者 Sibri Alphonse Sandwidi Doua Allain Gnabahou Frédéric Ouattara 《International Journal of Geosciences》 2020年第8期501-517,共17页
This paper aims to establish a comparison between both geomagnetic activity classification methods on foF2 diurnal variation over solar cycle phases. It concerns first a comparison of geomagnetic activity occurrences ... This paper aims to establish a comparison between both geomagnetic activity classification methods on foF2 diurnal variation over solar cycle phases. It concerns first a comparison of geomagnetic activity occurrences according to both classification methods;and second the geomagnetic effect on foF2 diurnal variation profiles as defined for the equatorial latitudes. The occurrences of the different disturbed geomagnetic activities (recurrent activity (RA), shock activity (SA) and fluctuant activity (FA)) according to both classifications (ancient classification (AC) and new classification (NC)) have been studied at Dakar ionosonde station (Lat: 14.8°N;Long: 342.6°E). Regarding both classifications, the RA occurs more during the decreasing phase. And it’s observed that the RA occurs the most during the increasing phase for the AC and during the minimum phase for the NC. The maximum gap of occurrence (<img src="Edit_e4627ea9-9a9a-4473-9017-202d04a16377.bmp" alt="" /><span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#45</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">11.1%</span><span style="font-family:Verdana;"> (for the negative value which is observed during the increasing phase) and </span><span style="font-family:Verdana;">+16.74%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). The occurrence of the SA in relation with both classifications is the lowest during the minimum phase and the maximum occurrence is observed during the maximum and decreasing phases, for the AC, with a value close to </span><span style="font-family:Verdana;">37%</span><span style="font-family:Verdana;"> and for the NC at the maximum phase with a percentage of </span><span style="font-family:Verdana;">54.47%</span><span><span style="font-family:Verdana;">. The maximum gap of occurrence (</span><img src="Edit_20fa141b-ecee-4e06-8024-144ba0969395.bmp" alt="" /></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#45</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">17.85%</span><span style="font-family:Verdana;"> (for the negative value which is observed at maximum phase) and </span><span style="font-family:Verdana;">+13.53%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). For both classifications, the FA occurs the least during the minimum phase and the most during the maximum phase for the AC and at maximum and decreasing phases with percentage values of occurrence of roughly </span><span style="font-family:Verdana;">37%</span><span><span style="font-family:Verdana;"> for the NC. The maximum gap of occurrence (</span><img src="Edit_eecb8939-783e-4d43-b92c-80c528c1890b.bmp" alt="" /><span style="font-family:Verdana;"></span></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#45</span></span>10% (for the negative value which is observed during the decreasing phase) and </span><span style="font-family:;" "=""><span style="font-family:Verdana;">+20.11%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the maximum phase). foF2 diurnal profiles throughout solar cycle phases concerning the AC and the NC have been compared. The FA diurnal profiles don’t present a difference. The RA and the SA present a difference during minimum and increasing phases and the least at maximum and decreasing phases.</span></span></span> 展开更多
关键词 Geomagnetic Activity Classification Method solar cycle Phases foF2 Diurnal Profile
在线阅读 下载PDF
Seasonal Variations of Solar Wind Parameters during Solar Cycles 23 and 24
12
作者 Somaïla Koala Yacouba Sawadogo Jean Louis Zerbo 《Open Journal of Applied Sciences》 CAS 2022年第9期1527-1546,共20页
In this paper, we analyzed diurnal and annual seasonal variations of solar wind parameters such as interplanetary magnetic field (IMF), proton density (N), solar wind speed (V) and solar wind dynamic pressure (Pdym), ... In this paper, we analyzed diurnal and annual seasonal variations of solar wind parameters such as interplanetary magnetic field (IMF), proton density (N), solar wind speed (V) and solar wind dynamic pressure (Pdym), during the solar cycles 23 and 24. Our study shows that strong geomagnetic disturbances are observed at the equinoxes during both solar cycles. The highest proton densities are observed at solstices during both solar cycles. The greatest solar wind speeds are observed at the equinoxes of solar cycle 23 and at the solstices of solar cycle 24. The highest solar wind dynamic pressures are observed at the solstices of both solar cycles. We also observed an asymmetrical evolution of the seasonal diurnal values of the solar wind parameters during the two cycles, except for the proton density. Our investigations also highlight the fact that the seasonal diurnal values of the solar wind parameters are significant at solar cycle 23 compared to solar cycle 24 characterized by a global weak in solar plasma conditions since the deep minimum that followed the solar cycle 23 leading to an absence of a persistent polar coronal hole. The drop observed in polar field and solar winds parameters during solar cycle 24 is reproduced on seasons (solstices and equinoxes). The solar cycle 23 and 24 appear to be two magnetically opposite solar cycles regardless the time scales. 展开更多
关键词 DIURNAL SEASONAL solar Winds PARAMETERS VARIATION solar cycle
在线阅读 下载PDF
TEC Variability during Fluctuating Events at Koudougou Station during Solar Cycle 24
13
作者 Tinlé Pahima Doua Allain Gnabahou +1 位作者 Sibri Alphonse Sandwidi Frédéric Ouattara 《International Journal of Geosciences》 CAS 2022年第10期936-950,共15页
This paper deals with TEC variability during fluctuating geomagnetic events (FE) during solar cycle 24 at Koudougou station (lat: 12<sup>o</sup>15'N;Geo long: -2<sup>o</sup>20'E). The s... This paper deals with TEC variability during fluctuating geomagnetic events (FE) during solar cycle 24 at Koudougou station (lat: 12<sup>o</sup>15'N;Geo long: -2<sup>o</sup>20'E). The study was done by comparing TEC variations during FE days with those of quiet days (QA). Comparison was made taking into account solar phases’ and seasons’ influences. FE’s and QA’s TEC curves are characterized by dome profiles. All graphs show two troughs, one in the morning (0500 LT) and the second in the evening (around 2000 LT) and a peak around 1400 LT during all solar phases and winter months and around 1500 LT for the remaining seasons. Both troughs are caused by the decrease of the photo ionization and an increase of the recombination phenomena, as well for FE as for QA periods. FE cause positive storms during all solar phases as well as during seasons and some negative storms during spring and summer months and minimum and maximum solar phases. 展开更多
关键词 Total Electronic Content Fluctuating Events solar cycles PHOTOIONIZATION Recombination Positive Storms Negative Storms
在线阅读 下载PDF
Comparative Study of foF2 during Quiet Geomagnetic Activity with URSI and CCIR Predictions during the Phase Minimum of Solar Cycle 22
14
作者 Moustapha Konaté Abidina Diabaté +2 位作者 Kadidia Nonlo Drabo Emmanuel Nanéma Frédéric Ouattara 《Journal of Applied Mathematics and Physics》 2022年第12期3562-3571,共10页
This paper investigates the performance of the latest International Reference Ionosphere model to predict the critical frequency at low latitudes in the African region. The variability of the critical frequency of the... This paper investigates the performance of the latest International Reference Ionosphere model to predict the critical frequency at low latitudes in the African region. The variability of the critical frequency of the F2 layer of the ionosphere (foF2) is studied for the different seasons of the phase minimum of solar cycle 22 during quiet geomagnetic activity at the Ouagadougou station. The data used are those provided by the ionosonde and the predictions of the two subprograms: International Radio Consultative Committee (CCIR) and International Radio-Scientific Union (URSI) of the 2016 version of the International Reference Ionosphere model. This study shows that, in general, URSI and CCIR of the IRI-2016 model are able to reproduce fairly well the variability of the critical frequency of the F2 layer of the ionosphere at low latitudes during the phase minimum at the Ouagadougou station. However, the model shows an almost homogeneous overestimation of the foF2 during the four seasons studied. The good response is observed between 0700 TL and 1900 TL for the available data. The agreement between the subroutine responses and the observed results is between reasonable and poor. The best match state response is obtained in winter with the CCIR subroutine. These results show that there is a need to improve both CCIR and URSI subroutines of the IRI-2016 model in low latitudes in the African region. 展开更多
关键词 FOF2 IRI IONOSONDE Quiet Time Periods solar cycle Phase Minimum
在线阅读 下载PDF
Statistical Study of the Geoeffectivity of Halo Coronal Mass Ejections Associated with X-Class Flares during Solar Cycles 23 and 24
15
作者 Younoussa Diakite Christian Zoundi +1 位作者 M’Bi Kabore Jean Louis Zerbo 《Open Journal of Applied Sciences》 2024年第4期950-960,共11页
By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ej... By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ejections associated with X-class flares appear to be among the most energetic events in solar activity given the size of the flares, the speed of the CMEs and the intense geomagnetic storms they produce. Out of eighty-six (86) X-class halo CMEs, thirty-seven (37) or 43% are highly geoeffective;twenty-four (24) or approximately 28% are moderately geoeffective and twenty-five (25) or 29% are not geoeffective. Over the two solar cycles (1996 to 2019), 71% of storms were geoeffective and 29% were not. For solar cycle 23, about 78% of storms were geoeffective, while for solar cycle 24, about 56% were geoeffective. For the statistical study based on speed, 85 halo CMEs associated with X-class flares were selected because the CME of 6 December 2006 has no recorded speed value. For both solar cycles, 75.29% of the halo CMEs associated with X-class flares have a speed greater than 1000 km/s. The study showed that 42.18% of halo (X) CMEs with speeds above 1000 km/s could cause intense geomagnetic disturbances. These results show the contribution (in terms of speed) of each class of halo (X) CMEs to the perturbation of the Earth’s magnetic field. Coronal mass ejections then become one of the key indicators of solar activity, especially as they affect the Earth. 展开更多
关键词 CME Halo (X) Geoeffectivity Geomagnetic Storm solar Flare solar cycle
在线阅读 下载PDF
Distributions and Structure of the Solar Wind during Solar Cycles 23 and 24
16
作者 Somaïla Koala Wendkouni Paulin Bere +2 位作者 Yacouba Sawadogo Issamaïl Ki Jean Louis Zerbo 《International Journal of Geosciences》 2023年第9期813-826,共14页
To observe the level of interaction between the solar wind and the geomagnetic activity, we analyzed the distribution of the solar wind speeds according to the different classes of geomagnetic activity and the differe... To observe the level of interaction between the solar wind and the geomagnetic activity, we analyzed the distribution of the solar wind speeds according to the different classes of geomagnetic activity and the different phases of solar activity. We found that, the magnetic quiet activity reccord 80% of the solar wind speeds V s observed 88% of solar wind speeds V > 450 km/s. The shock activity observes 82% of the solar wind speeds V > 450 km/s. About 70% of the solar wind speeds V > 450 km/s, are observed in the corotating activity class. The cloud shock activity and fluctuating activity classes observed respectively 37% and 55% of the wind speeds V > 450 km/s. Furthermore, slow solar winds are mainly observed at the minimum phase of each solar cycle;but exceptionally the solar maximum phase of solar cycle 24, records a significant rate of slow solar wind. Shock winds are mainly observed around the solar maximum and recurrent winds are mainly observed at the descending phase of the solar cycle. Corotating stable winds and moderate shock winds dominate respectively at the descending phase and at the maximum phase. 展开更多
关键词 solar Wind solar Activity Geomagnetic Activity solar cycle
在线阅读 下载PDF
Photometric and Statistical Analysis of Solar Energetic Particle (SEP) for the Peak of Solar Cycle 24
17
作者 Wafaa Zaki Atheer Zidane Amjad Al-Sawad 《International Journal of Astronomy and Astrophysics》 2016年第3期276-287,共13页
The major solar energetic particle events for the peak of solar cycle (24) for years (2012-2015) are analyzed by using the Energetic and Relativistic Nucleus and Electrons (ERNE) detectors and Large Angle and Spectrom... The major solar energetic particle events for the peak of solar cycle (24) for years (2012-2015) are analyzed by using the Energetic and Relativistic Nucleus and Electrons (ERNE) detectors and Large Angle and Spectrometric Coronagraph Experiment (LASCO) on board SOHO. It is found that the number of events which satisfies the required condition was 82 events. LASCO give information about Central Position Angle (CPA), Angular Width (AW), the speed of associated Coronal Mass Ejections (CMEs) and their basic features which cataloged in a data base SOHO/LASCO. The logarithmic intensity-time profile of SEP for the peak of solar cycle (24) was provided by ERNE, and from this profile the injection time, width, speed and onset time were estimated. All results that arise from these photometric analysis were statistically analyzed by using the statistical program SPSS (version 19). It have been concluded that 90% of these events were halo (360&deg;) CPA, 1% of North West, 4% South West and 2% North East and South East, as well as it was found that 39% gradual events and 29% impulsive events while 32% were not clear events, and also the acceleration of the energetic particle is not only in the interplanetary but also in the location of the event. We found from the statistical analysis for these events that the acceleration is inversely proportional to speed and the relationship between them is not relevant and also the speed increase in two regions, from year 2012 and 2014. This confirms that the peak of solar cycle (24) really is double peak. All these investigations were employed as data base for the space agencies to protect the solar wind. 展开更多
关键词 Coronal Mass Ejections CMEs solar Wind solar Energetic Particles SEPs SOHO-LASCO-ERNE: Data Base solar cycle (24)
在线阅读 下载PDF
Proposed Wave Momentum Source for Generating the 22-Year Solar Cycle
18
作者 Hans G. Mayr 《International Journal of Astronomy and Astrophysics》 2023年第2期74-88,共15页
For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear sour... For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear source term that can simulate the observations—which leaves open the question of the actual source mechanism for the solar cycle. Addressing this question, we propose to take guidance from the wave mechanism that generates the 2-year Quasi-biennial Oscillation (QBO) in the Earth atmosphere. Upward propagating gravity waves, eastward and westward, deposit momentum to generate the observed zonal wind oscillation. On the Sun, helioseismology has provided a thorough understanding of the acoustic p-waves, which propagate down into the convective envelope guided by the increasing temperature and related propagation velocity. Near the tachocline with low turbulent viscosity, the waves propagating eastward and westward can produce an axisymmetric 22-year oscillation of the zonal flow velocities that can generate the magnetic solar dynamo. Following the Earth model, waves in opposite directions can generate in the Sun wind and magnetic field oscillations in opposite directions, the proposition of a potential solar cycle mechanism. 展开更多
关键词 Dynamo Models Apply Artificial Nonlinearity Wave Generated Nonlinear Terrestrial 2-Year Oscillation Model-Analogue Example Helioseismology Wave Source Proposed for solar cycle Mechanism
在线阅读 下载PDF
Prediction of the Amplitude and Main Characteristics of Solar Cycle 25
19
作者 Daniel B. Berdichevsky Rubén D. Piacentini 《Advances in Aerospace Science and Technology》 2024年第4期191-200,共10页
In this note, we estimate the maximum amplitude for the Solar Cycle 25. We use the curvature technique presented for earlier cycles by Verdes and coworkers. We further extrapolate the location of the solar maximum num... In this note, we estimate the maximum amplitude for the Solar Cycle 25. We use the curvature technique presented for earlier cycles by Verdes and coworkers. We further extrapolate the location of the solar maximum number of Sunspots, of which the prediction made is about 115 in the year 2025 and identify the arrival to the minimum in the year 2031, forecasting the main characteristics for the current Solar Cycle 25 and list a short comparison with a few other predictions. 展开更多
关键词 solar Corona Manifestations in the Evolution of the solar cycle (Sun Spots) Mathematical Techniques and Tools Used to Evaluate a Function’s Fundamental Properties Sun Spots Since the Start of Their Recording Near Year 1774 of This Era
在线阅读 下载PDF
Forecasting solar cycles using the time-series dense encoder deep learning model
20
作者 Cui Zhao Shangbin Yang +1 位作者 Jianguo Liu Shiyuan Liu 《Astronomical Techniques and Instruments》 2026年第1期43-54,共12页
The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and na... The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and navigation systems.Consequently,accurately predicting the intensity of the SC holds great significance,but predicting the SC involves a long-term time series,and many existing time series forecasting methods have fallen short in terms of accuracy and efficiency.The Time-series Dense Encoder model is a deep learning solution tailored for long time series prediction.Based on a multi-layer perceptron structure,it outperforms the best previously existing models in accuracy,while being efficiently trainable on general datasets.We propose a method based on this model for SC forecasting.Using a trained model,we predict the test set from SC 19 to SC 25 with an average mean absolute percentage error of 32.02,root mean square error of 30.3,mean absolute error of 23.32,and R^(2)(coefficient of determination)of 0.76,outperforming other deep learning models in terms of accuracy and training efficiency on sunspot number datasets.Subsequently,we use it to predict the peaks of SC 25 and SC 26.For SC 25,the peak time has ended,but a stronger peak is predicted for SC 26,of 199.3,within a range of 170.8-221.9,projected to occur during April 2034. 展开更多
关键词 solar cycle Forecasting TiDE Deep learning
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部