We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta_2O_5 and ZrO_2 have been deposited at t<400 ℃ ...We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta_2O_5 and ZrO_2 have been deposited at t<400 ℃ by means of a UV photo-CVD technique and HfO_2 by photo-assisted sol-gel processing with the aid of excimer lamps. The UV annealing of as-grown layers was found to significantly improve their electrical properties. Low leakage current densities on the order of 10 -8 A/cm 2 at 1 MV/cm for deposited ultrathin Ta_2O_5 films and ca.10 -6 A/cm 2 for the photo-CVD ZrO_2 layers and photo-irradiated sol-gel HfO_2 layers have been readily achieved. The improvement in the leakage properties of these layers is attributed to the UV-generated active oxygen species O( 1D) which strongly oxidize any suboxides to form more stoichiometric oxides on removing certain defects, oxygen vacancies and impurities present in the as-prepared layers. The photo-CVD Ta_2O_5 films deposited across 10.16-cm Si wafers exhibit a high thickness uniformity with a variation of less than \{±2.0%\} being obtained for ultrathin ca.10 nm thick films. The lamp technology can in principle be extended to larger area wafers, providing a promising low temperature route to the fabrication of a range of high quality thin films for future ULSI technology.展开更多
Water soluble fullerenols were synthesized and incorporated in SiO2, SiO2-TiO2, GPTMS-SiO2, GPTMS-ATPS inorganic and organic-inorganic materials by sol-gel processes. The maximum concentrations of C60(OH)n and C70(OH)...Water soluble fullerenols were synthesized and incorporated in SiO2, SiO2-TiO2, GPTMS-SiO2, GPTMS-ATPS inorganic and organic-inorganic materials by sol-gel processes. The maximum concentrations of C60(OH)n and C70(OH)n in the obtained SiO2 gels were estimated to be about 0.6% and 1.5% in weight, respectively. The characteristics of the UV/visible spectra of fullerenols in H2O and various gels were measured and compared. The thermal stability of fullerenols in gels was investigated with differential thermal analysis (DTA). The results indicate that the absorption features of fullerenols in solid gels are similar to those in H2O and the fullerenols in SiO2 are stable at 400℃. The optical limiting effect of the fullerenols was investigated preliminarily.展开更多
β-Na YF4:Yb3+,Er3+ microrods were synthesized through hydrothermal methods. Polyethylene glycol with molecular weight of 6000 was used as surfactant. A series of transparent silica gel films with upconversion lumines...β-Na YF4:Yb3+,Er3+ microrods were synthesized through hydrothermal methods. Polyethylene glycol with molecular weight of 6000 was used as surfactant. A series of transparent silica gel films with upconversion luminescence property was prepared through sol-gel method; the prepared β-Na YF4:Yb3+,Er3+ microrods were used as activator. The silica gel films show strong upconversion emission under excitation of 980-nm laser beam.展开更多
A complex Sol-Gel process has been used for synthesis of silica glasses designed to contain high-level nuclear wastes. Cs, Sr, Co, and Nd (generically denoted Me) were used, the last as surrogate for actinides. Gels i...A complex Sol-Gel process has been used for synthesis of silica glasses designed to contain high-level nuclear wastes. Cs, Sr, Co, and Nd (generically denoted Me) were used, the last as surrogate for actinides. Gels in the form of powders and sintered compacts were prepared by hydrolysis and polycondensation of tetraethoxide/Me nitrate solutions, which contained ascorbic acid as a catalyst. Thermal treatment studies were conducted on the resulting gels. Transformation to final products was studied by thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction. Preliminary testing of Me leaching was also completed in quiescent water. Only a single dense form was resistant to展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at dif...Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.展开更多
The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot co...The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
This critical review looks at the assessment of the application of artificial intelligence in handling legal documents with specific reference to medical negligence cases with a view of identifying its transformative ...This critical review looks at the assessment of the application of artificial intelligence in handling legal documents with specific reference to medical negligence cases with a view of identifying its transformative potentialities, issues and ethical concerns. The review consolidates findings that show the impact of AI in improving the efficiency, accuracy and justice delivery in the legal profession. The studies show increased efficiency in speed of document review and enhancement of the accuracy of the reviewed documents, with time efficiency estimates of 60% reduction of time. However, the review also outlines some of the problems that continue to characterize AI, such as data quality problems, biased algorithms and the problem of the opaque decision-making system. This paper assesses ethical issues related to patient autonomy, justice and non-malignant suffering, with particular focus on patient privacy and fair process, and on potential unfairness to patients. This paper’s review of AI innovations finds that regulations lag behind AI developments, leading to unsettled issues regarding legal responsibility for AI and user control over AI-generated results and findings in legal proceedings. Some of the future avenues that are presented in the study are the future of XAI for legal purposes, utilizing federated learning for resolving privacy issues, and the need to foster adaptive regulation. Finally, the review advocates for Legal Subject Matter Experts to collaborate with legal informatics experts, ethicists, and policy makers to develop the best solutions to implement AI in medical negligence claims. It reasons that there is great potential for AI to have a deep impact on the practice of law but when done, it must do so in a way that respects justice and on the Rights of Individuals.展开更多
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
As a new research direction in contemporary cognitive science,predictive processing surpasses traditional computational representation and embodied cognition and has emerged as a new paradigm in cognitive science rese...As a new research direction in contemporary cognitive science,predictive processing surpasses traditional computational representation and embodied cognition and has emerged as a new paradigm in cognitive science research.The predictive processing theory advocates that the brain is a hierarchical predictive model based on Bayesian inference,and its purpose is to minimize the difference between the predicted world and the actual world,so as to minimize the prediction error.Predictive processing is therefore essentially a context-dependent model representation,an adaptive representational system designed to achieve its cognitive goals through the minimization of prediction error.展开更多
Supercapacitors are efficient and versatile energy storage devices,offering remarkable power density,fast charge/discharge rates,and exceptional cycle life.As research continues to push the boundaries of their perform...Supercapacitors are efficient and versatile energy storage devices,offering remarkable power density,fast charge/discharge rates,and exceptional cycle life.As research continues to push the boundaries of their performance,electrode fabrication techniques are critical aspects influencing the overall capabilities of supercapacitors.Herein,we aim to shed light on the advantages offered by dry electrode processing for advanced supercapacitors.Notably,our study explores the performance of these electrodes in three different types of electrolytes:organic,ionic liquids,and quasi-solid states.By examining the impact of dry electrode processing on various electrode and electrolyte systems,we show valuable insights into the versatility and efficacy of this technique.The supercapacitors employing dry electrodes demonstrated significant improvements compared with conventional wet electrodes,with a lifespan extension of+45%in organic,+192%in ionic liquids,and+84%in quasi-solid electrolytes.Moreover,the increased electrode densities achievable through the dry approach directly translate to improved volumetric outputs,enhancing energy storage capacities within compact form factors.Notably,dry electrode-prepared supercapacitors outperformed their wet electrode counterparts,exhibiting a higher energy density of 6.1 Wh cm^(-3)compared with 4.7 Wh cm^(-3)at a high power density of 195Wcm^(-3),marking a substantial 28%energy improvement in the quasi-solid electrolyte.展开更多
Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem....Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.展开更多
With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Alth...With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.展开更多
Background The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion,thereby impacting energy utilization.This study aimed to explore the impact of grain ...Background The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion,thereby impacting energy utilization.This study aimed to explore the impact of grain variety and processing methods on the net energy(NE)in dairy goats,analyzing these effects at the level of nutrient digestion and metabolism.Methods Eighteen castrated Guanzhong dairy goats(44.25±3.59 kg BW)were randomly divided into 3 groups,each consisting of 6 replicates.The substitution method was employed to determine the NE values of the dry-rolled corn(DRC),dry-rolled wheat(DRW)or steam-flaked corn(SFC,360 g/L).Briefly,two phases were performed.Throughout the basal phase,all goats were fed the same basal diet.In the substitution phase,30%of the basal diet was replaced with DRC,DRW and SFC,respectively.Results In this study,the NE values of the DRC,DRW and SFC were 7.65,7.54 and 7.44 MJ/kg DM,respectively.Compared to the DRC group,the DRW group showed increased digestibility of starch and crude protein(CP).Similarly,the SFC group exhibited increased organic matter(OM)and starch digestibility and a trend towards higher dry matter(DM)digestibility,reduced fecal OM and starch content.Additionally,fecal volatile fatty acid(VFA)concentrations decreased in goats fed SFC.Correspondingly,digestible energy(DE)in the DRW and SFC groups tended to be higher than in the DRC group.DRW increased total VFA concentration compared to DRC,while SFC increased the proportion of propionate and decreased the acetate-to-propionate ratio in the rumen.Both the DRW and SFC diets elevated serum glucose levels.Furthermore,heat increment(HI)and gaseous energy(Gas E)related to fermentation were significantly higher in the DRW and SFC groups compared to the DRC group.Conclusion Our findings indicated that DRW and SFC increased rumen starch fermentation in goats,thereby improving total tract starch digestion and DE.However,DRW and SFC failed to improve NE value due to increased heat and gas energy production from fermentation.Therefore,excessively refined grains processing in the diet of dairy goats does not effectively improve energy efficiency.展开更多
文摘We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta_2O_5 and ZrO_2 have been deposited at t<400 ℃ by means of a UV photo-CVD technique and HfO_2 by photo-assisted sol-gel processing with the aid of excimer lamps. The UV annealing of as-grown layers was found to significantly improve their electrical properties. Low leakage current densities on the order of 10 -8 A/cm 2 at 1 MV/cm for deposited ultrathin Ta_2O_5 films and ca.10 -6 A/cm 2 for the photo-CVD ZrO_2 layers and photo-irradiated sol-gel HfO_2 layers have been readily achieved. The improvement in the leakage properties of these layers is attributed to the UV-generated active oxygen species O( 1D) which strongly oxidize any suboxides to form more stoichiometric oxides on removing certain defects, oxygen vacancies and impurities present in the as-prepared layers. The photo-CVD Ta_2O_5 films deposited across 10.16-cm Si wafers exhibit a high thickness uniformity with a variation of less than \{±2.0%\} being obtained for ultrathin ca.10 nm thick films. The lamp technology can in principle be extended to larger area wafers, providing a promising low temperature route to the fabrication of a range of high quality thin films for future ULSI technology.
文摘Water soluble fullerenols were synthesized and incorporated in SiO2, SiO2-TiO2, GPTMS-SiO2, GPTMS-ATPS inorganic and organic-inorganic materials by sol-gel processes. The maximum concentrations of C60(OH)n and C70(OH)n in the obtained SiO2 gels were estimated to be about 0.6% and 1.5% in weight, respectively. The characteristics of the UV/visible spectra of fullerenols in H2O and various gels were measured and compared. The thermal stability of fullerenols in gels was investigated with differential thermal analysis (DTA). The results indicate that the absorption features of fullerenols in solid gels are similar to those in H2O and the fullerenols in SiO2 are stable at 400℃. The optical limiting effect of the fullerenols was investigated preliminarily.
基金Supported by the National Natural Science Foundation of China(No.61308085)
文摘β-Na YF4:Yb3+,Er3+ microrods were synthesized through hydrothermal methods. Polyethylene glycol with molecular weight of 6000 was used as surfactant. A series of transparent silica gel films with upconversion luminescence property was prepared through sol-gel method; the prepared β-Na YF4:Yb3+,Er3+ microrods were used as activator. The silica gel films show strong upconversion emission under excitation of 980-nm laser beam.
基金part of studies that will be contin-ued within Polish Governmental Project“Technology Supporting Development of Safe Nuclear Power,”Part“Development of Techniques and Technologies Supporting Management of Spent Nuclear Fuel and Radioactive Waste.”
文摘A complex Sol-Gel process has been used for synthesis of silica glasses designed to contain high-level nuclear wastes. Cs, Sr, Co, and Nd (generically denoted Me) were used, the last as surrogate for actinides. Gels in the form of powders and sintered compacts were prepared by hydrolysis and polycondensation of tetraethoxide/Me nitrate solutions, which contained ascorbic acid as a catalyst. Thermal treatment studies were conducted on the resulting gels. Transformation to final products was studied by thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction. Preliminary testing of Me leaching was also completed in quiescent water. Only a single dense form was resistant to
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.
基金financially supported by the National Natural Science Foundation of China(No.52105373)the China Scholarship Council(No.202106020094).
文摘Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.
文摘The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘This critical review looks at the assessment of the application of artificial intelligence in handling legal documents with specific reference to medical negligence cases with a view of identifying its transformative potentialities, issues and ethical concerns. The review consolidates findings that show the impact of AI in improving the efficiency, accuracy and justice delivery in the legal profession. The studies show increased efficiency in speed of document review and enhancement of the accuracy of the reviewed documents, with time efficiency estimates of 60% reduction of time. However, the review also outlines some of the problems that continue to characterize AI, such as data quality problems, biased algorithms and the problem of the opaque decision-making system. This paper assesses ethical issues related to patient autonomy, justice and non-malignant suffering, with particular focus on patient privacy and fair process, and on potential unfairness to patients. This paper’s review of AI innovations finds that regulations lag behind AI developments, leading to unsettled issues regarding legal responsibility for AI and user control over AI-generated results and findings in legal proceedings. Some of the future avenues that are presented in the study are the future of XAI for legal purposes, utilizing federated learning for resolving privacy issues, and the need to foster adaptive regulation. Finally, the review advocates for Legal Subject Matter Experts to collaborate with legal informatics experts, ethicists, and policy makers to develop the best solutions to implement AI in medical negligence claims. It reasons that there is great potential for AI to have a deep impact on the practice of law but when done, it must do so in a way that respects justice and on the Rights of Individuals.
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
基金supported by the National Social Science Fund of China’s project‘Philosophical Research on the Challenge of Artificial Cognition to Natural Cognition’(grant number 21&ZD061)
文摘As a new research direction in contemporary cognitive science,predictive processing surpasses traditional computational representation and embodied cognition and has emerged as a new paradigm in cognitive science research.The predictive processing theory advocates that the brain is a hierarchical predictive model based on Bayesian inference,and its purpose is to minimize the difference between the predicted world and the actual world,so as to minimize the prediction error.Predictive processing is therefore essentially a context-dependent model representation,an adaptive representational system designed to achieve its cognitive goals through the minimization of prediction error.
基金funding of the joint Polish-German project SUPILMIX(PR-1173/27)by the German Research Foundation(DFG,Deutsche Forschungsgemeinschaft)+1 种基金funding from the Alexander von Humboldt Foundation.D.L.the German Chemical Industry Fund for the financial support through a Liebig Fellowship.
文摘Supercapacitors are efficient and versatile energy storage devices,offering remarkable power density,fast charge/discharge rates,and exceptional cycle life.As research continues to push the boundaries of their performance,electrode fabrication techniques are critical aspects influencing the overall capabilities of supercapacitors.Herein,we aim to shed light on the advantages offered by dry electrode processing for advanced supercapacitors.Notably,our study explores the performance of these electrodes in three different types of electrolytes:organic,ionic liquids,and quasi-solid states.By examining the impact of dry electrode processing on various electrode and electrolyte systems,we show valuable insights into the versatility and efficacy of this technique.The supercapacitors employing dry electrodes demonstrated significant improvements compared with conventional wet electrodes,with a lifespan extension of+45%in organic,+192%in ionic liquids,and+84%in quasi-solid electrolytes.Moreover,the increased electrode densities achievable through the dry approach directly translate to improved volumetric outputs,enhancing energy storage capacities within compact form factors.Notably,dry electrode-prepared supercapacitors outperformed their wet electrode counterparts,exhibiting a higher energy density of 6.1 Wh cm^(-3)compared with 4.7 Wh cm^(-3)at a high power density of 195Wcm^(-3),marking a substantial 28%energy improvement in the quasi-solid electrolyte.
基金supported by the Start-up Fund from Hainan University(No.KYQD(ZR)-20077)。
文摘Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.
基金funded by the Joint Project of Industry-University-Research of Jiangsu Province(Grant:BY20231146).
文摘With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.
基金supported by the National Key Research and Development Program of China(2023YFE0111800)Shaanxi Livestock and Poultry Breeding Double-chain Fusion Key Project(grant number 2022GD-TSLD-46-0501)。
文摘Background The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion,thereby impacting energy utilization.This study aimed to explore the impact of grain variety and processing methods on the net energy(NE)in dairy goats,analyzing these effects at the level of nutrient digestion and metabolism.Methods Eighteen castrated Guanzhong dairy goats(44.25±3.59 kg BW)were randomly divided into 3 groups,each consisting of 6 replicates.The substitution method was employed to determine the NE values of the dry-rolled corn(DRC),dry-rolled wheat(DRW)or steam-flaked corn(SFC,360 g/L).Briefly,two phases were performed.Throughout the basal phase,all goats were fed the same basal diet.In the substitution phase,30%of the basal diet was replaced with DRC,DRW and SFC,respectively.Results In this study,the NE values of the DRC,DRW and SFC were 7.65,7.54 and 7.44 MJ/kg DM,respectively.Compared to the DRC group,the DRW group showed increased digestibility of starch and crude protein(CP).Similarly,the SFC group exhibited increased organic matter(OM)and starch digestibility and a trend towards higher dry matter(DM)digestibility,reduced fecal OM and starch content.Additionally,fecal volatile fatty acid(VFA)concentrations decreased in goats fed SFC.Correspondingly,digestible energy(DE)in the DRW and SFC groups tended to be higher than in the DRC group.DRW increased total VFA concentration compared to DRC,while SFC increased the proportion of propionate and decreased the acetate-to-propionate ratio in the rumen.Both the DRW and SFC diets elevated serum glucose levels.Furthermore,heat increment(HI)and gaseous energy(Gas E)related to fermentation were significantly higher in the DRW and SFC groups compared to the DRC group.Conclusion Our findings indicated that DRW and SFC increased rumen starch fermentation in goats,thereby improving total tract starch digestion and DE.However,DRW and SFC failed to improve NE value due to increased heat and gas energy production from fermentation.Therefore,excessively refined grains processing in the diet of dairy goats does not effectively improve energy efficiency.