期刊文献+
共找到8,683篇文章
< 1 2 250 >
每页显示 20 50 100
A hybrid contact approach for modeling soil-structure interaction using the material point method
1
作者 Qinyang Sang Yonglin Xiong +3 位作者 Rongyue Zheng Xiaohua Bao Guanlin Ye Feng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1864-1882,共19页
The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early c... The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early contact and contact penetration can occur when the contact conditions are unsuitable,and(2)the method is not available for contact problems involving rigid-nonrigid materials,which can cause numerical instability.This study presents a new hybrid contact approach for the MPM to address these limitations to simulate the soil and structure interactions.The approach combines the advantages of point-point and point-segment contacts to implement contact detection,satisfying the impenetrability condition and smoothing the corner contact problem.The proposed approach is first validated through a disk test on an inclined slope.Then,several typical cases,such as granular collapse,bearing capacity,and deformation of a flexible retaining wall,are simulated to demonstrate the robustness of the proposed approach compared with FEM or analytical solutions.Finally,the proposed method is used to simulate the impact of sand flow on a deformable structure.The results show that the proposed contact approach can well describe the phenomenon of soil-structure interaction problems. 展开更多
关键词 Material point method soil-structure interaction Numerical simulation Contact algorithm
在线阅读 下载PDF
A quantitative framework for tree-soil interaction mechanisms in expansive clay:Field investigation and empirical modeling
2
作者 Xi Sun Jie Li +2 位作者 You Gao Xin Liu Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5155-5169,共15页
The complex behaviors of expansive soils,particularly their volumetric changes driven by moisture variations,pose significant challenges in urban geotechnical engineering.Although vegetation-induced moisture changes a... The complex behaviors of expansive soils,particularly their volumetric changes driven by moisture variations,pose significant challenges in urban geotechnical engineering.Although vegetation-induced moisture changes are known to affect ground movement,quantitative characterization of tree–soil interactions remains limited due to insufficient field data and unclear relationships between tree water uptake and soil response.This study investigates the mechanical behavior of expansive clay soils influenced by two Lophostemon confertus samples during a 14-month field monitoring program in Melbourne,Australia.The research methodology integrates measurements of soil displacement,total soil suction,moisture content,and tree water consumption through instrumentation and monitoring systems.Field measurements suggest that tree roots reached the limits of their water extraction capacity when total soil suction exceeded 2880 kPa within the active root zone.The spatial extent of tree-induced soil desiccation reached 0.6–0.7 times the tree height laterally and penetrated to depths of 2.5–3.3 m vertically.The mature sample,with an 86%greater crown area and a threefold larger sapwood area,exhibited 142%higher water consumption(35 kL),demonstrating the scalability of tree–soil interaction mechanisms.A multiple linear regression model was developed to quantify the coupled relationships between soil movement and key variables,achieving a high adjusted R2 value of 0.97,which provides engineers and practitioners with a practical tool for estimating ground movement near trees.These findings offer valuable insights for infrastructure design in tree-adjacent environments and can inform computational models and design codes to enable more accurate site assessments and sustainable urban development. 展开更多
关键词 Empirical model Expansive soil Ground movement Soil suction Soil water dynamics Tree root–soil interaction
在线阅读 下载PDF
A Nonlinear Multi-Scale Interaction Model for Atmospheric Blocking:A Tool for Exploring the Impact of Changing Climate on Mid-to-High Latitude Weather Extremes 被引量:1
3
作者 Dehai LUO Wenqi ZHANG Binhe LUO 《Advances in Atmospheric Sciences》 2025年第10期2018-2035,共18页
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and... A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread. 展开更多
关键词 nonlinear Schrödinger equation nonlinear multi-scale interaction model of atmospheric blocking meridional background potential vorticity gradient climate change mid-to-high latitude weather extremes
在线阅读 下载PDF
A new human-computer interaction paradigm: Agent interaction model based on large models and its prospects
4
作者 Yang LIU 《虚拟现实与智能硬件(中英文)》 2025年第3期237-266,共30页
This study examines the advent of agent interaction(AIx)as a transformative paradigm in humancomputer interaction(HCI),signifying a notable evolution beyond traditional graphical interfaces and touchscreen interaction... This study examines the advent of agent interaction(AIx)as a transformative paradigm in humancomputer interaction(HCI),signifying a notable evolution beyond traditional graphical interfaces and touchscreen interactions.Within the context of large models,AIx is characterized by its innovative interaction patterns and a plethora of application scenarios that hold great potential.The paper highlights the pivotal role of AIx in shaping the future landscape of the large model industry,emphasizing its adoption and necessity from a user's perspective.This study underscores the pivotal role of AIx in dictating the future trajectory of a large model industry by emphasizing the importance of its adoption and necessity from a user-centric perspective.The fundamental drivers of AIx include the introduction of novel capabilities,replication of capabilities(both anthropomorphic and superhuman),migration of capabilities,aggregation of intelligence,and multiplication of capabilities.These elements are essential for propelling innovation,expanding the frontiers of capability,and realizing the exponential superposition of capabilities,thereby mitigating labor redundancy and addressing a spectrum of human needs.Furthermore,this study provides an in-depth analysis of the structural components and operational mechanisms of agents supported by large models.Such advancements significantly enhance the capacity of agents to tackle complex problems and provide intelligent services,thereby facilitating a more intuitive,adaptive,and personalized engagement between humans and machines.The study further delineates four principal categories of interaction patterns that encompass eight distinct modalities of interaction,corresponding to twenty-one specific scenarios,including applications in smart home systems,health assistance,and elderly care.This emphasizes the significance of this new paradigm in advancing HCI,fostering technological advancements,and redefining user experiences.However,it also acknowledges the challenges and ethical considerations that accompany this paradigm shift,recognizing the need for a balanced approach to harness the full potential of AIx in modern society. 展开更多
关键词 interaction paradigm Agent interaction Large models
在线阅读 下载PDF
Insights into Virus-Host Interactions:Lessons from Caenorhabditis elegans-Orsay Virus Model
5
作者 Xun Wu Heng Liu Yusong R.Guo 《Current Medical Science》 2025年第2期169-184,共16页
The study of virus-host interactions has been significantly advanced using model organisms,with nematodes being a prominent example.Caenorhabditis elegans(C.elegans)nematodes have provided valuable insights into the m... The study of virus-host interactions has been significantly advanced using model organisms,with nematodes being a prominent example.Caenorhabditis elegans(C.elegans)nematodes have provided valuable insights into the mechanisms of viral infections,host defense strategies,and the development of antiviral therapies.With the discovery of natural viral pathogens of nematodes,Orsay virus,Le Blanc virus,Santeuil virus,and Mělník virus,the exploration of the virus-host interaction model based on nematodes has entered a new era.The virus-host interaction network consists of viruses,hosts,and the antagonistic effects of viruses on host immunity.The nematode virus-host interaction model is a concrete manifestation used to study the complex relationships among these three elements.Previous studies have indicated that during the entire process of nematode infection by viruses,antiviral RNA interference(RNAi)plays a crucial role.Additionally,the host’s innate immune responses,such as the antiviral-specific intracellular pathogen response(IPR)and certain signaling pathways homologous to those in humans,are particularly important in the natural immune and antiviral processes of nematodes.These processes are regulated by multiple genes in the host.The reverse genetics system for Orsay virus has been successfully developed to study viral gene function and virus-host interactions.Nematodes serve as simple host models for understanding RNA virus replication,related cellular components,and virus-host interaction mechanisms.These findings will likely contribute to the development of antiviral treatment strategies based on novel targets. 展开更多
关键词 Natural infection Innate immunity Virus-host interaction model Nematode virus Orsay virus
暂未订购
Physiologically relevant coculture model for oral microbial-host interactions
6
作者 Zeyang Pang Nicole M.Cady +3 位作者 Lujia Cen Thomas M.Schmidt Xuesong He Jiahe Li 《International Journal of Oral Science》 2025年第4期517-528,共12页
Understanding microbial-host interactions in the oral cavity is essential for elucidating oral disease pathogenesis and its systemic implications.In vitro bacteria-host cell coculture models have enabled fundamental s... Understanding microbial-host interactions in the oral cavity is essential for elucidating oral disease pathogenesis and its systemic implications.In vitro bacteria-host cell coculture models have enabled fundamental studies to characterize bacterial infection and host responses in a reductionist yet reproducible manner.However,existing in vitro coculture models fail to establish conditions that are suitable for the growth of both mammalian cells and anaerobes,thereby hindering a comprehensive understanding of their interactions.Here,we present an asymmetric gas coculture system that simulates the oral microenvironment by maintaining distinct normoxic and anaerobic conditions for gingival epithelial cells and anaerobic bacteria,respectively.Using a key oral pathobiont,Fusobacterium nucleatum,as the primary test bed,we demonstrate that the system preserves bacterial viability and supports the integrity of telomerase-immortalized gingival keratinocytes.Compared to conventional models,this system enhanced bacterial invasion,elevated intracellular bacterial loads,and elicited more robust host pro-inflammatory responses,including increased secretion of CXCL10,IL-6,and IL-8.In addition,the model enabled precise evaluation of antibiotic efficacy against intracellular pathogens.Finally,we validate the ability of the asymmetric system to support the proliferation of a more oxygen-sensitive oral pathobiont,Porphyromonas gingivalis.These results underscore the utility of this coculture platform for studying oral microbial pathogenesis and screening therapeutics,offering a physiologically relevant approach to advance oral and systemic health research. 展开更多
关键词 elucidating oral disease pathogenesis oral microbial host interactions Fusobacterium nucleatum oral cavity coculture model mammalian cells vitro coculture models bacterial infection
暂未订购
Numerical investigation of the effects of soil-structure and granular material-structure interaction on the seismic response of a flat-bottom reinforced concrete silo
7
作者 Sonia Benkhellat Mohammed Kadri Abdelghani Seghir 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期609-623,共15页
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte... In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%. 展开更多
关键词 reinforced concrete silo perfectly matched layers soil-structure interaction granular material-structure interaction effective seismic input method damage index
在线阅读 下载PDF
Comparison between seismic analysis of twisting and regular 52-story towers considering soil-structure interaction
8
作者 Mohamed Naguib Abouelsaad Mohammed Shaaban +1 位作者 Salah El Bagalaty Mohamed E.El Madawy 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期663-675,共13页
A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic perfor... A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases. 展开更多
关键词 soil-structure interaction seismic analysis twisting towers base shear story drift finite element method Midas GTS NX
在线阅读 下载PDF
Multi-Body Dynamics Modeling of Heavy Goods Vehicle-Rail Interaction
9
作者 Lili Liu Jianhua Liu Jihong Zuo 《Open Journal of Applied Sciences》 2024年第7期1715-1722,共8页
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes... Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling. 展开更多
关键词 Vehicle-Rail Coupling Dynamic modeling Wheel-Rail interaction Forces
在线阅读 下载PDF
On the use of 1g physical models for ground movements and soil-structure interaction problems 被引量:2
10
作者 Marwan Al Heib Fabrice Emeriault Huu-Luyen Nghiem 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期197-211,共15页
The paper focusses on the use of physical modelling in ground movements(induced by underground cavity collapse or mining/tunnelling)and associated soil-structure interaction issues.The paper presents first an overview... The paper focusses on the use of physical modelling in ground movements(induced by underground cavity collapse or mining/tunnelling)and associated soil-structure interaction issues.The paper presents first an overview of using 1 g physical models to solve geotechnical problems and soil-structure interactions related to vertical ground movements.Then the lg physical modelling application is illustrated to study the development of damage in masonry structure due to subsidence and cavity collapse.A largescale 1 g physical model with a 6 m^3 container and 15 electric jacks is presented with the use of a threedimensional(3D)image correlation technique.The influence of structure position on the subsidence trough is analysed in terms of crack density and damage level.The obtained results can improve the methodology and practice for evaluation of damage in masonry structures.Nevertheless,ideal physical model is difficult to achieve.Thus,future improvement of physical models(analogue materials and instrumentation)could provide new opportunities for using 1 g physical models in geotechnical and soilstructure applications and research projects. 展开更多
关键词 SUBSIDENCE PHYSICAL modelLING GEOTECHNICAL PROBLEMS soil-structure interaction
在线阅读 下载PDF
Soil-structure interaction of unsymmetrical trench installation culvert 被引量:8
11
作者 陈保国 郑俊杰 鲁燕儿 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期94-98,共5页
The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately ... The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately reflect the changes in vertical loads on trench installation culverts. So the changes in vertical earth pressure and soil arching effect in the backfill for an unsymmetrical trench installation culvert are studied based on a full scale experiment and finite element (FE) simulation. The variation laws of foundation pressure and settlement are also analyzed. Meanwhile, the influence of eccentric load induced by an unsymmetrical trench installation on the interaction of a soil- structure system is discussed. Results show that soil arch is formed when the backfill on the culvert reaches a certain height. It can relieve the earth pressure concentration on the crest of the culvert, but it is instable. The earth pressures obtained by full scale experiment and numerical simulation are greater than those calculated by the current CGCDHBC method. The eccentric load effect on the culvert has a significant influence on the stress states and deformation of the soil-structure system. 展开更多
关键词 soil-structure interaction soil arching effect eccentric load effect full scale experiment numerical simulation
在线阅读 下载PDF
Two-Dimensional XY Ferromagnet Induced by Long-Range Interaction
12
作者 Tianning Xiao Dingyun Yao +2 位作者 Chao Zhang Zhijie Fan Youjin Deng 《Chinese Physics Letters》 2025年第7期10-15,共6页
The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mech... The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mechanism makes the problem more subtle and less understood in the two-dimensional(2D)XY model,a cornerstone for investigating low-dimensional phenomena and their implications in quantum computation.We study the 2D XY model with algebraically decaying interaction~1/r^(2+σ).Utilizing an advanced update strategy,we conduct LR Monte Carlo simulations of the model up to a linear size of L=8192.Our results demonstrate continuous phase transitions into a ferromagnetic phase forσ<2,which exhibit the simultaneous emergence of a long-ranged order and a power-law decaying correlation function due to the Goldstone mode.Furthermore,we fnd logarithmic scaling behaviors in the low-temperature phase atσ=2.The observed scaling behaviors in the low-temperature phase forσ≤2 agree with our theoretical analysis.Our fndings request further theoretical understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays. 展开更多
关键词 advanced updat long range interaction lr interacting systemsthe two dimensional xy model lr coupling algebraically decaying ferromagnetic phase d xy model
原文传递
Practical Application of the Multi-Dimensional Interactive Teaching Model in College English
13
作者 Bo Sun 《Journal of Contemporary Educational Research》 2025年第10期106-111,共6页
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse... The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality. 展开更多
关键词 Multi-dimensional interactive teaching model Student-centered approach Teacher-student interaction
在线阅读 下载PDF
Photostimulus-responsive Non-covalent Interactions in Polymers:A Review
14
作者 Phakamat Limarun Kwanchai Buaksuntear +11 位作者 Siriwan Jansrinak Ariya Julbust Saree Phongphanphanee Hassarutai Yangthong Supitta Suethao Pornsiri Kaewpradit Pairote Jittham Sedthawatt Sucharitpwatskul Karine Mougin Arnaud Spangenberg Antoine Le Duigou Wirasak Smitthipong 《Chinese Journal of Polymer Science》 2025年第5期677-694,共18页
This study reviews light-responsive polymers in various applications,including drug delivery,information storage,sensor,self-healing material,antibacterial or anti-fouling,and environmental applications.Light-responsi... This study reviews light-responsive polymers in various applications,including drug delivery,information storage,sensor,self-healing material,antibacterial or anti-fouling,and environmental applications.Light-responsive polymers are a new material type being developed for various medical,electronics,engineering,and environmental applications.The working principle of light-responsive materials is based on metalligand interactions or non-covalent interactions between polymer functional groups,metal ions,and other filler functional groups.Light irradiation causes physical and mechanical changes in drug delivery and antibacterial systems,which results in the materials releasing more drugs or antibacterial substances.When materials in information storage devices and sensors are exposed to light,they can change color or glow.This has been applied for data storage to reveal QR codes under UV light.Additionally,this review discusses the thermodynamic aspects and computer modeling of light-responsive materials to emphasize the importance and development of these materials.Finally,light-responsive polymer development for various applications is presented. 展开更多
关键词 Photostimulus-responsive materials Non-covalent interactions THERMODYNAMICS Computer modeling Smart materials
原文传递
Identification of QTL-by-environment interaction by controlling polygenic background effect
15
作者 Fuping Zhao Lixian Wang Shizhong Xu 《Journal of Genetics and Genomics》 2025年第7期915-926,共12页
The quantitative trait loci(QTL)-by-environment(Q × E) interaction effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a linear mixed model th... The quantitative trait loci(QTL)-by-environment(Q × E) interaction effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a linear mixed model that simultaneously analyzes data from multiple environments to detect Q × E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects. Simulation studies demonstrate that our approach is more powerful than the meta-analysis and inclusive composite interval mapping methods. We further analyze four agronomic traits of rice across four environments. A main effect QTL is identified for 1000-grain weight(KGW), while no QTL are found for tiller number. Additionally, a large QTL with a significant Q × E interaction is detected on chromosome 7 affecting grain number, yield, and KGW. This region harbors two important genes, PROG1 and Ghd7. Furthermore, we apply our mixed model to analyze lodging in barley across six environments. The six regions exhibiting Q × E interaction effects identified by our approach overlap with the SNPs previously identified using EM and MCMC-based Bayesian methods, further validating the robustness of our approach. Both simulation studies and empirical data analyses show that our method outperforms all other methods compared. 展开更多
关键词 Q×E interaction Main effect META-ANALYSIS Mixed model Polygenic background
原文传递
Numerical Investigations on Evolution Characteristics of Sand Waves Under Current and Waves at Various Interaction Angles
16
作者 ZANG Zhi-peng TIAN Rui +2 位作者 ZOU Xing XIE Bo-tao ZHANG Jin-feng 《China Ocean Engineering》 2025年第4期648-661,共14页
A three-dimensional numerical model of sand wave dynamics,incorporating the interaction of currents and waves at various angles,has been developed using the Regional Ocean Modeling System(ROMS).This model accounts for... A three-dimensional numerical model of sand wave dynamics,incorporating the interaction of currents and waves at various angles,has been developed using the Regional Ocean Modeling System(ROMS).This model accounts for both bedload and suspended load sediment transport under combined waves and current conditions.The investigation examines the influence of several key parameters,including the rotation angle of sand waves relative to the main current,tidal current velocity amplitude,residual current,water depth,wave height,wave period,and wave direction,on sand wave evolution.The growth rate and migration rate of sand waves decrease as their rotation angle increases.For rotation angles smaller than 15°,sand wave evolution can be effectively simulated by a vertical 2D model with an error within 10%.The numerical results demonstrate that variations in tidal current velocity amplitude or residual current affect both vertical growth and horizontal migration of sand waves.As tidal current velocity amplitude and residual current increase,the growth rate initially rises to a maximum before decreasing.The migration rate shows a consistent increase with increasing tidal current amplitude and residual current.Under combined waves and current,both growth and migration rates decrease as water depth increases.With increasing wave height and period,the growth rate and migration rate initially rise to maximum values before declining,while showing a consistent increase with wave height and period.The change rate of sand waves reaches its maximum when wave propagation aligns parallel to tidal currents,and reaches its minimum when wave propagation is perpendicular to the currents.This phenomenon can be explained by the fluctuation of total bed shear stress relative to the angle of interaction between waves and current. 展开更多
关键词 sand waves 3D numerical model tidal current WAVES angles of interaction growth rate migration rate
在线阅读 下载PDF
Numerical Simulation and Experimental Study of the Rotor-Stator Interaction of a Turbine Under Variable Flow Coefficients
17
作者 Ran Ren Qiang Du +3 位作者 Guang Liu Zengyan Lian Lei Xie Yifu Luo 《哈尔滨工程大学学报(英文版)》 2025年第3期518-531,共14页
Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational ... Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational pumping effect, mainstream pressure asymmetry, rotor–stator interaction,and unsteady flow structures, complicating the flow. To investigate the impact of rotor–stator interaction on ingestion, this paper decouples the model to include only the mainstream. This research employs experiments and numerical simulations to examine the effects of varying the flow coefficient through changes in rotational speed and mainstream flow rate. The main objective is to understand the influence of different rotor–stator interactions on the mainstream pressure field, accompanied by mechanistic explanations. The findings reveal inconsistent effects of the two methods for changing the flow coefficient on the mainstream pressure field. Particularly, the pressure distribution on the vane side primarily depends on the mainstream flow rate, while the pressure on the blade side is influenced by the mainstream flow rate and the attack angle represented by the flow coefficient. A larger angle of attack angle can increase pressure on the blade side, even surpassing the pressure on the vane side. Assessing the degree of mainstream pressure unevenness solely based on the pressure difference on the vane side is insufficient. This research provides a basis for subsequent studies on the influence of coupled real turbine rotor–stator interaction on gas ingestion. 展开更多
关键词 Rotor–stator interaction Pressure field Flow coefficients Unsteady Reynolds-averaged Navier-Stokes modeling(URANS) Attack angle
在线阅读 下载PDF
Seismic performance of concrete tunnel-sand-pile interaction by the shake table test
18
作者 Md.Foisal Haque Mehedi A.Ansary 《Deep Underground Science and Engineering》 2025年第3期461-481,共21页
This research presents the square root sum of squares response of displacements and tunnel moments under the Kobe and Loma Prieta seismic excitations with a peak ground acceleration of 0.05 g for various dry relative ... This research presents the square root sum of squares response of displacements and tunnel moments under the Kobe and Loma Prieta seismic excitations with a peak ground acceleration of 0.05 g for various dry relative densities of local sand in Bangladesh.For this reason,a one-dimensional gravitational shake table test was performed after calibration to determine the seismic performance of the concrete tunnel-sand-pile interaction model.A vertical 40 kg load was applied on each pile cap along with the seismic excitations.The experimental results obtained were compared with the previous numerical study conducted by using field data so as to better interpret the variations of results.In the case of vertical sand displacement,the ratio between the previous field data obtained through numerical study and the present study is found to be 0.96.Moreover,the experimental results were compared with the 3D full-scale numerical analysis results of Plaxis considering the Mohr-Coulomb constitutive model of sand.Variations of experimental and numerical results show a satisfactory level of alignment with the previously published work.According to the shake table test results,the lateral displacement of the tunnel is greater than the vertical displacement because of the transverse directional seismic excitation on the tunnel body.The minimum difference between lateral and vertical displacements of the tunnel is found to be 31%for a relative density of 27%under the Loma Prieta earthquake.However,this research may be advanced in the future by considering various peak ground accelerations,tunnel-pile clearance,and geometric properties. 展开更多
关键词 experimental investigations interactive displacements and moments Mohr-Coulomb model numerical analysis square root sum of squares(SRSS)
原文传递
FLOCKING OF A THERMODYNAMIC CUCKER-SMALE MODEL WITH LOCAL VELOCITY INTERACTIONS
19
作者 金春银 李双智 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期632-649,共18页
In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on pe... In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate. 展开更多
关键词 FLOCKING local interaction thermodynamical Cucker-Smale model stochastic matrix neighbor graph
在线阅读 下载PDF
Effect of the sloping seabed on 3D soil-spudcan interaction using a material point-finite element(MPM-FEM)model
20
作者 Zhengda Lei Guangtian Zeng +2 位作者 Huaihui Ren Bisheng Wu Yuxin Jie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1436-1454,共19页
The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining... The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining the material point method and finite element method(MPM-FEM)to analyze the impact of sloping seabeds on the three-dimensional soil-spudcan interaction.The MPM-FEM model implements the B¯approach to solve the challenge of volumetric locking due to the incompressibility constraints imposed by yield criterion.It is validated against the centrifuge results.The effects of sloping seabeds on penetration resistance,soil flow pattern,lateral response,stress distribution,and failure mechanism are discussed.The soil mainly undergoes overall failure when the ratio of penetration depth to spudcan diameter(i.e.D P/D)is between 0 and 0.25.As the slope angle increases,the soil on the side of lower slope is expelled further,resulting in an asymmetric stress distribution and a larger horizontal sliding force of soil.When D P/D increases to 0.75,the soil transitions to localized plastic flow failure,and the range of soil flow affected by the spudcan penetration decreases.The results show that,when the slope angle increases,the lateral displacement and stress distribution on the lower slope of a sloping seabed is significantly larger than that of a horizontal seabed,impacting the spudcan and surrounding soil behavior.The study suggests that the seabed slope significantly affects the range of soil flow and failure at shallow penetration,indicating that the slope angle should be taken into account in the design and installation of offshore jack-up rigs,particularly in areas with sloping seabeds. 展开更多
关键词 Soil-spudcan interaction Centrifuge tests MPM-FEM model B—approach Sloping seabeds Offshore structures
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部