The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classif...The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classification. This experiment was conducted under a controllable environment, and different soil samples from northeast of China were measured using ASD2500 hyperspectral instrument. The results showed that there are different reflectances in different soil types. There are statistically significant correlation between SOM and reflectence at 0.05 and 0.01 levels in 550–850 nm, and all soil types get significant at 0.01 level in 650–750 nm. The results indicated that soil types of the northeast can be divided into three categories: The first category shows relatively flat and low reflectance in the entire band; the second shows that the spectral reflectance curve raises fastest in 460–610 nm band, the sharp increase in the slope, but uneven slope changes; the third category slowly uplifts in the visible band, and its slope in the visible band is obviously higher than the first category. Except for the classification by curve shapes of reflectance, principal component analysis is one more effective method to classify soil types. The first principal component includes 62.13–97.19% of spectral information and it mainly relates to the information in 560–600, 630–690 and 690–760 nm. The second mainly represents spectral information in 1 640–1 740, 2 050–2 120 and 2 200–2 300 nm. The samples with high OM are often in the left, and the others with low OM are in the right of the scatter plot(the first principal component is the horizontal axis and the second is the longitudinal axis). Soil types in northeast of China can be classified effectively by those two principles; it is also a valuable reference to other soil in other areas.展开更多
Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to t...Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to the complexity of pore structure in heterogeneous coarse-grained soil,identifying the critical threshold for the transition from Darcy to non-Darcy seepage is challenging.This paper introduces equivalent particle size(dep)and relative roughness(λt)as indirect indicators reflecting the pore characteristics,quantifying the complex pore structure of heterogeneous coarse-grained soil.The formulae for the derivation of Reynolds number and resistance coefficient for heterogeneous coarse-grained soil are presented.By conducting permeability tests on coarse-grained soils with different pore structures,the effect of particle composition heterogeneity on seepage characteristics was analyzed.The flow regime of heterogeneous coarse-grained soil is divided into laminar,transitional,and turbulent stages based on the relationship between Reynolds number and resistance coefficient.The energy loss patterns in each stage are closely related to pore structure.By setting the permeability ratio k∗=0.95 as the critical threshold for the transition from Darcy to non-Darcy seepage,a method for calculating the critical Reynolds number(Recr)for heterogeneous coarse-grained soil is proposed.Furthermore,we applied this method to other published laboratory data,analyzing the differences in the critical threshold for seepage transition between homogeneous and heterogeneous coarse-grained soil.This study aims to propose a more accurate and general criterion for the transition from Darcy to non-Darcy seepage in heterogeneous coarse-grained soil.展开更多
Wenlan FENG,Pierre MARIOTTE,Jun GU,XiaodongSONG,JinlingYANG,Fei YANG,Yuguo ZHAOand Ganlin ZHANG In the fourth and fifth lines of the study area section on Page 903,the mean annual temperature(MAT)and precipitation(MAP...Wenlan FENG,Pierre MARIOTTE,Jun GU,XiaodongSONG,JinlingYANG,Fei YANG,Yuguo ZHAOand Ganlin ZHANG In the fourth and fifth lines of the study area section on Page 903,the mean annual temperature(MAT)and precipitation(MAP)values are incorrect.They should be—17 to 24.2°C and 18.3 to 3155 mm,respectively.展开更多
The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engin...The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.展开更多
Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different app...Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different application rates of biochar on the cracking pattern and shrinkage characteristics of lime concretion black soil after three wetting and drying cycles.Biochar derived from the corn straw and peanut shell mixture was applied to the soil at rates of 0,50,100,and 150 g kg^(-1)dry weight,representing the treatments T_(0),T_(50),T_(100),and T_(150),respectively.During the wetting and drying cycles,the cracking pattern and shrinkage characteristics of the unamended and amended soil samples were recorded.Application of biochar significantly increased soil organic carbon content in the samples.During soil desiccation,biochar significantly reduced the rate of water loss.Cracks propagated slowly and stopped due to the relatively higher water content in the soil applied with biochar.The cracking area density(ρ_c),equivalent width,fractal dimension,and cracking connectivity index decreased during the drying process with increasing application rate of biochar.Theρ_(c )value of the T_(50),T_(100),and T_(150) treatments decreased by 33.6%,52.1%,and 56.9%,respectively,after three wetting and drying cycles,whereas the T_(0) treatment exhibited a marginal change.The coefficient of linear extensibility,an index used to describe onedimentional shrinkage,of the unamended soil sample(T_(0))was approximately 0.23.Application of 100 and 150 g kg^(-1)biochar to the soil significantly reduced the shrinkage capacity by 41.45%and 45.54%,respectively.The slope of the shrinkage characteristics curve,which indicates the ralationship between soil void ratio and moisture ratio,decreased with increase in the application rate of biochar.Furthermore,compared with the T_(0) treatment,the proportional shrinkage zone of the shrinkage characteristic curve of the T_(50),T_(100),and T_(150) treatments decreased by 5.8%,13.1%,and 12.1%,respectively.Differences were not observed in the moisture ratio at the maximum curvature of the shrinkage characteristic curve among the treatments.The results indicate that biochar can alter the cracking pattern and shrinkage characteristics of lime concretion black soil.However,the effects of biochar on the shrinkage of lime concretion black soil are dependent on the number of wetting and drying cycles.展开更多
Multipurpose tree species (MPTs) were studied in an agroforestry arboretum under subtropical humid climate in Northeast India. Out of 12 MPTs planted under agroforestry systems, Acacia auriculiformis in spacing of 2...Multipurpose tree species (MPTs) were studied in an agroforestry arboretum under subtropical humid climate in Northeast India. Out of 12 MPTs planted under agroforestry systems, Acacia auriculiformis in spacing of 2 m × 2 m (2500 stems·hm^-2) could have the potentiality to meet the timber/fuelwood requirement due to its high wood production of 635 m^3·hm^-2 with mean annual increment (MAI) of 2.54×10^-2 m^3.treel.a^-1 in a short rotation period of 10 years. Thus, A. auriculiformis is a short rotation forest tree species suitable to grow in subtropical humid climate. On the other hand, at 16 years of age, Eucalyptus hybrid and Michelia champaca in spacing of 3 m × 3 m (1111 stems.hm^2) produced appreciably high timber volume of 315 m^3.hm^-2 and 165 m^3.hm^-2 with MAI of 1.77×10^-2 m^3.tree^-1·a^-1 and 0.92×10.2 m^3.tree^-1.a^-1, respectively. At 16 years of age, Gmelina arborea produced a timber volume of 147 m^3.hm^-2 with MAI of 1.47×10^-2 m^3.tree^-1.a^-1 followed by Samania saman (140 m^3.hm^-2), Albizziaprocera (113 m^3·hm^-2) and Tectona grandis (79 m3.hm^-2) with MAI of 1.40, 1.13 and 0.78 × 10^-2 m^3 .tree^-1a^-1, respectively in 4 m × 4 m spacing (625 stems.hm^-2). Gliricidia maculata and Leucaena leucocephala could be used as live fences around the farm boundary to supply their N-rich leaves for mulch as well as manure to crops. In agroforestry arboretum, direct seeded upland rice (Oryza sativa - variety, AR-11), groundnut (Arachis hypogaea - variety, JL-24) and sesamum (Sesamum indicum - variety, B-67) were grown during the initial period upto 8 years of tree establishment. Under other MPTs, there was a reduction in crop productivity as compared to open space. After 8 years of tree establishment, horti-silvi and silvi-pastoral systems were developed and pineapple (Ananas comosus - variety Queen), turmeric (Curcuma longa -variety RCT -1) and cowpea (Vigna sinensis - variety Pusa Barsati) as forage crop were raised. The productivity of pineapple, turmeric and cowpea was comparatively high under Azadirachta indica. The productivity of horticultural and forage crops in association with trees such as G. arborea, A. procera, S. saman, T. grandis and M. champaca of high timber value could be harnessed as viable agroforestry systems. Changes in soil properties were also monitored. Amelioration of soil acidity, increase in soil organic carbon, and enhanced humification of soil humus, high nutrient availability, low soil erodibility and high surface soil (0-15 cm) moisture availability were noted in soils under MPTs.展开更多
Soil salinization has adverse effects on the soil physical-chemical characteristics.However,little is known about the changes in soil salt ion concentrations and other soil physical-chemical characteristics within the...Soil salinization has adverse effects on the soil physical-chemical characteristics.However,little is known about the changes in soil salt ion concentrations and other soil physical-chemical characteristics within the Qarhan Salt Lake and at different soil depths in the surrounding areas.Here,we selected five sampling sites(S1,S2,S3,S4,and S5)alongside the Qarhan Salt Lake and in the Xidatan segment of the Kunlun Mountains to investigate the relationship among soil salt ion concentrations,soil physical-chemical characteristics,and environmental variables in April 2019.The results indicated that most sites had strongly saline and very strongly saline conditions.The main salt ions present in the soil were Na^(+),K^(+),and Cl^(-).Soil nutrients and soil microbial biomass(SMB)were significantly affected by the salinity(P<0.05).Moreover,soil salt ions(Na^(+),K^(+),Ca2+,Mg^(2+),Cl^(-),CO_(3)^(2-),SO_(4)^(2-),and HCO_(3)^(-))were positively correlated with electrical conductivity(EC)and soil water content(SWC),but negatively related to altitude and soil depth.Unlike soil salt ions,soil nutrients and SMB were positively correlated with altitude,but negatively related to EC and SWC.Moreover,soil nutrients and SMB were negatively correlated with soil salt ions.In conclusion,soil nutrients and SMB were mainly influenced by salinity,and were related to altitude,soil depth,and SWC in the areas from the Qarhan Salt Lake to the Xidatan segment.These results imply that the soil quality(mainly evaluated by soil physical-chemical characteristics)is mainly influenced by soil salt ions in the areas surrounding the Qarhan Salt Lake.Our results provide an accurate prediction of how the soil salt ions,soil nutrients,and SMB respond to the changes along a salt gradient.The underlying mechanisms controlling the soil salt ion distribution,soil nutrients,and SMB in an extremely arid desert climate playa should be studied in greater detail in the future.展开更多
[Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide s...[Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide scientific basis for the musmelon planting in this area. [Method] Root system soil sample and plow pan sample were collected from the main muskmelon planting area in Hetao irrigation area, so as to analyze the contents of heavy metal elements. By comparing with the Soft Environmental Quality Standard (GB15618-1995), the research explored whether the heavy metal elements in root system met the national standard. [Result] Heavy metal elements in root system soil had the maximum content in recession area of Yellow River, followed by saline soils. The content of heavy metal elements in chestnut-brown soil was the minimum. Harmful elements As, Cd, Hg, F and Pb in anthropogenic-alluvial soil of Hetao irrigation area showed enrichment characteristics in earth surface, with zonality vertically. Trace elements Cu and Zn, and beneficial elements P, K20, CaO, MgO and Se showed depletion. In anthropogenic-aUuvial soil of Ulansuhai of the Yellow River, harmful elements As and Cd showed significant enrichment in root system soil, while other elements showed depletion or was close to background value. In soil of plow pan, both beneficial component and harmful component showed enrichment characteristics. [Conclusion] Hetao irrigation area has the ideal geochemical conditions and heavy metal elements in muskmelon area meet the national standards.展开更多
Numerous incidents and failures of landslides in reservoir areas are attributed to water level fluctuations,which frequently induce cyclic changes in seepage pressure within the soil masses.Under such complex cyclic s...Numerous incidents and failures of landslides in reservoir areas are attributed to water level fluctuations,which frequently induce cyclic changes in seepage pressure within the soil masses.Under such complex cyclic seepage conditions,the hydro-mechanical behavior of sliding-zone soils may significantly differ from that observed under steady seepage conditions.However,the seepage characteristics and deformation behavior of sliding-zone soils experiencing cyclic seepage pressure are not yet fully understood.In this study,we conduct cyclic seepage pressure tests under isotropic consolidation to investigate the variation in hydraulic conductivity and volumetric strain of sliding-zone soils.The results show that the hydraulic conductivity of the sliding-zone soil samples fluctuatesunder cyclic seepage pressure,with the magnitude increasing as seepage pressure amplitude rises and decreasing with higher confiningpressure.Additionally,the volumetric strain of the sliding-zone soil samples exhibited notable fluctuationsunder cyclic seepage pressure,with the magnitude of the fluctuationsintensifying as the seepage pressure amplitude increased.The cumulative volumetric strain and irrecoverable volumetric strain of the samples are higher compared to those observed under steady seepage pressure.Subsequently,hysteresis loops are classifiedinto three types,each indicating distinct deformation characteristics.Finally,the micromechanism of sliding-zone soil under cyclic seepage pressure,considering the effect of physicochemical reactions on pore structure,is revealed to interpret better the intrinsic mechanism of seepage characteristics and deformation behavior.These findingsprovide a theoretical basis for further accurately evaluating reservoir landslide stability under fluctuatingwater levels.展开更多
Sandy cobble soil exhibits pronounced heterogeneity.The assessment of the uncertainty surrounding its properties is crucial for the analysis of settlement characteristics resulting from volume loss during shield tunne...Sandy cobble soil exhibits pronounced heterogeneity.The assessment of the uncertainty surrounding its properties is crucial for the analysis of settlement characteristics resulting from volume loss during shield tunnelling.In this study,a series of probabilistic analyses of surface and subsurface settlements was conducted considering the spatial variability of the friction angle and reference stiffness modulus,under different volumetric block proportions(Pv)and tunnel volume loss rates(ηt).The non-intrusive random finite difference method was used to investigate the probabilistic characteristics of maximum surface settlement,width of subsurface settlement trough,maximum subsurface settlement,and subsurface soil volume loss rate through Monte Carlo simulations.Additionally,a comparison between stochastic and deterministic analysis results is presented to underscore the significance of probabilistic analysis.Parametric analyses were subsequently conducted to investigate the impacts of the key input parameters in random fields on the settlement characteristics.The results indicate that scenarios with higher Pv or greaterηt result in a higher dispersion of stochastic analysis results.Neglecting the spatial variability of soil properties and relying solely on the mean values of material parameters for deterministic analysis may result in an underestimation of surface and subsurface settlements.From a probabilistic perspective,deterministic analysis alone may prove inadequate in accurately capturing the volumetric deformation mode of the soil above the tunnel crown,potentially affecting the prediction of subsurface settlement.展开更多
[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated ...[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated in this study,and soil available N,P,K,Cu,Zn,organic matter and pH value were also analyzed by routine analysis of soil nutrients in different degraded grasslands.[Result]With the intensification of degraded gradient and the soil depth,the ratio of plant root to soil was decreased gradually.The highest ratio of plant root to soil was in 0-10 cm depth of soil in grassland with different degraded gradients,while its ratio of plant root to soil changed from 0.001 to 0.040 with soil type of loam.Soil chemical characteristic changed in different degraded gradients.The content of available N,P,K reduced significantly with the soil depth and the intensification of degraded gradients.The content of Cu and Zn was relatively lack in degraded grassland.[Conclusion]There is no significant correlation between nutrition content or pH value and the succession degree of degraded grassland.展开更多
[Objective] To study the soil texture, water storage and related spectral characteristics of composited soil. [Method] 3 different ratios of composited soils was designed by using feldspathic sandstone and sand by 3 d...[Objective] To study the soil texture, water storage and related spectral characteristics of composited soil. [Method] 3 different ratios of composited soils was designed by using feldspathic sandstone and sand by 3 different ratios, 1:1(C1), 1:2(C2) and 1:5(C3), and the CK used loess soil and sand by 1:2, then the soil texture, water storage, soil and winter wheat spectral characteristic were measured and analyzed under those treatments in 2010-2013. [Result] (1) With the increasing of the plant- ing year, treatment C1, C2 and C3 all showed decreasing in the proportions of sand and increasing of silt and the CK showed decreasing of clay and increasing of sand, along 1-30 cm soil depth. Treatment C2 showed the proportion of sand, silt and clay were 76.69%, 18.72% and 4.70%, respectively. (2) The water contents of all the treatments were significant different from other in 0-60 cm soil depth, and showed increasing trend with the increasing of sand proportion. Treatment C2 had higher average water content during the 3 years than treatment CK, C1 and C3 by 21.34%, 11.59% and 3.91% in the same soil depth, respectively. (3) In 2013, the spectral reflection curve characters were similar for all treatment of winter wheat at the jointing stage and filling stage along the full-wave band (350-2 500 nm), and the reflectance was higher in the jointing stage than the filling stage; the reflection peak was found around 550 nm, a part of green light wave band. Treatment C2 showed the highest canopy that all treatments had similar spectral curves, and the relative reflectance of soil increased during 350-1 750 nm wave length along with the increase of the sand proportion; for treatment CK, C1, C2 and C3, the soil spectral reflectance (y) and wave length (x) appeared highly correlated relationships, they were y=0.18 71 In(x)-0.979 4, y=0.158 7 In(x)-0.801 2, y=0.177 1 In(x)-0.910 8 and y=0.184 5 In(x)-0.944 5, respectively. [Conclusion] Synthesizing the soil physical properties and related spectral character indices, treatment C2 generated the best combination ratio of feldspathic sandstone and sand.展开更多
Mountainous ecosystem soils are subject to colonization nowadays for agri</span><span style="font-family:Verdana;">cultural purposes due to an increasing population in towns making the</span&g...Mountainous ecosystem soils are subject to colonization nowadays for agri</span><span style="font-family:Verdana;">cultural purposes due to an increasing population in towns making the</span><span style="font-family:Verdana;"> detailed </span><span style="font-family:Verdana;">characterization of such soils indispensable. This work aims to characterize</span><span style="font-family:Verdana;"> the steep slopes soils of the Dschang hills and to evaluate their fertility level for </span><span style="font-family:Verdana;">agricultural valorization. Thus, four soil profiles were dug at various topographic</span><span style="font-family:Verdana;"> positions (summit (SP), shoulder (MP), backslope (BP) and footslope (PP)) following a toposequence. Samples of disturbed and undisturbed soils were taken and analyzed in the laboratory according to standard methods. The Fertility</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Capability</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Classification (FCC) and simple limitation methods were used to identify major agricultural constraints. The main results show that </span><span style="font-family:Verdana;">profiles thickness is moderate, between 0 and 120 cm, with a high sand</span><span style="font-family:Verdana;"> content </span><span style="font-family:Verdana;">(at least 50%) over the entire toposequence, especially at the surface. The</span><span style="font-family:Verdana;"> study site has four types of soils, namely Eutric</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Cambisols (ochric) in SP and L</span><span style="font-family:Verdana;">eptic</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Eutric</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Cambisols (Humic) in MP, Eutric</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Cambisols (Humic) in BP</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and Stagnic</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Oxygleyic</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Dystric</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Gleysols</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">(Humic) in pp. The soils are very acidic at PP, moderately acidic at BP and SP and slightly acidic at MP. Organic matter is higher at the surface than at depth at the topographic segments of MP, BP and PP and low to SP. The C/N ratio is high (>17) in all profiles except P4 </span><span style="font-family:Verdana;">(<10). In addition, the cation exchange capacity (CEC), the sum of</span><span style="font-family:Verdana;"> exchangeable bases, total nitrogen and available phosphorus is low in all profiles. The Ca/</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Mg/K balance in all the profiles shows a cation imbalance and a relatively </span><span style="font-family:Verdana;">high concentration of exchangeable potassium compared to the ideal</span><span style="font-family:Verdana;"> situation (76% Ca, 18% Mg and 6% K). The major constraints to crop production are: aluminum toxicity (a) and nutrients leaching (e), textural discontinuity (LS), flooding (g), low nutrient reserve (k), sand (S), clay (C) and slope (t). Hence the fertility capacity classes of these soils are CCaegk (PP), SSek (BP), SSte (MP) and LSaek (SP). To improve the yield, it will require off-season crop cultivation, fertilization and liming, and earthworks.展开更多
In order to identify the principal factors influencing soil water characteristics (SWC) and evaluate SWC effectively, the multivariate-statistical canonical correlation analysis (CCA) method was used to study and ...In order to identify the principal factors influencing soil water characteristics (SWC) and evaluate SWC effectively, the multivariate-statistical canonical correlation analysis (CCA) method was used to study and analyze the correlation between SWC and soil physical and chemical properties. Twenty-two soil samples were taken from 11 main tobacco-growing areas in Guizhou Province in China and the soil water characteristic curves (SWCC) and basic physical and chemical properties of the soil samples were determined. The results show that: (1) The soil bulk density, soil total porosity and soil capillary porosity have significant effects on SWC of tobacco fiels. Bulk density and total porosity are positively correlated with soil water retention characteristics (SWRC), and soil capillary porosity is positively correlated with soil water supply characteristics (SWSC). (2) Soil samples from different soil layers at the same soil sampling point show similarity or consistency in SWC. Inadequate soil water supply capability and imbalance between SWRC and SWSC are problems of tobacco soil. (3) The SWC of loamy clay are generally superior to those of silty clay loam.展开更多
This study aims to characterize the physical and mechanical properties of the soils from the Kenendé,Limbita 1,and Limbita 2 sites,located in the Dubréka prefecture,to develop a composite construction materi...This study aims to characterize the physical and mechanical properties of the soils from the Kenendé,Limbita 1,and Limbita 2 sites,located in the Dubréka prefecture,to develop a composite construction material based on soil and plant fibers that is more resistant to climatic and environmental conditions.To achieve this,soil samples were collected and subjected to various laboratory tests.The study assessed the physical and mechanical properties of these soils to develop a composite construction material incorporating soil and plant fibers.Laboratory tests revealed variations in water absorption capacity and compressive strength depending on the applied pressure(3,4,5 MPa)and the sample’s condition(dry or wet).After a 30-day maturation period,Kenendéexhibited a maximum dry-state strength of 2.66 MPa,while Limbita 1 and Limbita 2 recorded 0.95 MPa and 2.57 MPa,respectively.Soils compacted under high pressure demonstrated better performance,particularly in dry conditions.These results confirm the potential of the soils from the three sites for producing durable construction materials suitable for local climatic conditions,provided they undergo appropriate treatment and maturation,thereby contributing to sustainable construction in Guinea.展开更多
[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of comple...[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water.展开更多
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes...Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.展开更多
In this paper ecogeographical characteristics of forest soil animal i n mountainous districts of the eastern China was analyzed, and results show that soil fauna was very rich in diversified forest habitat, moreover,...In this paper ecogeographical characteristics of forest soil animal i n mountainous districts of the eastern China was analyzed, and results show that soil fauna was very rich in diversified forest habitat, moreover, as times and spaces varied, their compositions and abundance changed obviously too. Forest so il animal decreased gradually in taxa and individual number from the tropics to cold-temperature zone, and they are higher in zonal forest habitat than in other ones on the same mountain. Forest soil animal also got gradually less with incr easing of depth in soil layer, and distributed principally in surface layer. The activities of human had strong affection on faunal composition and diversity of soil animal. On the tropics and subtropics mountains, forest soil animal are le ss in spring-summer than in autumn-winter, whereas they are more in summer-autum n than in winter-spring from warm-temperate zone to cold-temperate zone.展开更多
Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and mor...Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and more importantly global climate change. Electrochemical methods were first employed to evaluate DOM redox properties, and spectroscopic approaches were utilized to obtain information concerning its composition and structure. DOM was extracted from a forest soil profile with five horizons. Differential pulse voltammetry indicated that there were more redox-active moieties in the DOM from upper horizons than in that from lower horizons. Cyclic voltammetry further showed that these moieties were reversible in electron transfer. Chronoamperometry was employed to quantify the electron transfer capacity of DOM, including electron acceptor capacity and electron donor capacity, both of which decreased sharply with increasing depth. FT-IR, UV-Vis and fluorescence spectra results suggested that DOM from the upper horizons was enriched with aromatic and humic structures while that from the lower horizons was rich in aliphatic carbon, which supported the findings obtained by electrochemical approaches. Electrochemical approaches combined with spectroscopic methods were applied to evaluate the characteristics of DOM extracted along a forest soil profile. The electrochemical properties of DOM, which can be rapidly and simply obtained, provide insight into the migration and transformation of DOM along a soil profile and will aid in better understanding of the biogeochemical role of DOM in natural environments.展开更多
[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture w...[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture were set to measure their photosynthetic indices, chlorophyll content and root vigor, and to observe their leaf tissue structure and stomatal characteristics. [Result] The findings indicated that there are no differences in the leaf physiological indices between bowl lotus under hydroponics and soil culture, while the leaf stomata of hydroponic bowl lotus is bigger and its amount is larger than that of soil-culture bowl lotus. At the same time, the ratio of the palisade tissue thickness to spongy tissue thickness is small,and its leaf tissue structure is loose. The root vigor of hydroponic bowl lotus reached its summit earlier, then began to drop. Whereas, the root activity of soil-culture lotus sustained increasing, with vigorous growth. [Conclusion] Therefore, it indicated that hydroponic bowl lotus can adapt to the aquatic-culture environment well and quickly, meanwhile, it also enters into its aging period quickly and its growth cycle gets shorter.展开更多
基金supported by the National Natural Science Foundation of China(41371292)
文摘The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classification. This experiment was conducted under a controllable environment, and different soil samples from northeast of China were measured using ASD2500 hyperspectral instrument. The results showed that there are different reflectances in different soil types. There are statistically significant correlation between SOM and reflectence at 0.05 and 0.01 levels in 550–850 nm, and all soil types get significant at 0.01 level in 650–750 nm. The results indicated that soil types of the northeast can be divided into three categories: The first category shows relatively flat and low reflectance in the entire band; the second shows that the spectral reflectance curve raises fastest in 460–610 nm band, the sharp increase in the slope, but uneven slope changes; the third category slowly uplifts in the visible band, and its slope in the visible band is obviously higher than the first category. Except for the classification by curve shapes of reflectance, principal component analysis is one more effective method to classify soil types. The first principal component includes 62.13–97.19% of spectral information and it mainly relates to the information in 560–600, 630–690 and 690–760 nm. The second mainly represents spectral information in 1 640–1 740, 2 050–2 120 and 2 200–2 300 nm. The samples with high OM are often in the left, and the others with low OM are in the right of the scatter plot(the first principal component is the horizontal axis and the second is the longitudinal axis). Soil types in northeast of China can be classified effectively by those two principles; it is also a valuable reference to other soil in other areas.
基金supported by the National Nature Science Foundation of China (Grant No.42072303)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2021Z004).
文摘Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to the complexity of pore structure in heterogeneous coarse-grained soil,identifying the critical threshold for the transition from Darcy to non-Darcy seepage is challenging.This paper introduces equivalent particle size(dep)and relative roughness(λt)as indirect indicators reflecting the pore characteristics,quantifying the complex pore structure of heterogeneous coarse-grained soil.The formulae for the derivation of Reynolds number and resistance coefficient for heterogeneous coarse-grained soil are presented.By conducting permeability tests on coarse-grained soils with different pore structures,the effect of particle composition heterogeneity on seepage characteristics was analyzed.The flow regime of heterogeneous coarse-grained soil is divided into laminar,transitional,and turbulent stages based on the relationship between Reynolds number and resistance coefficient.The energy loss patterns in each stage are closely related to pore structure.By setting the permeability ratio k∗=0.95 as the critical threshold for the transition from Darcy to non-Darcy seepage,a method for calculating the critical Reynolds number(Recr)for heterogeneous coarse-grained soil is proposed.Furthermore,we applied this method to other published laboratory data,analyzing the differences in the critical threshold for seepage transition between homogeneous and heterogeneous coarse-grained soil.This study aims to propose a more accurate and general criterion for the transition from Darcy to non-Darcy seepage in heterogeneous coarse-grained soil.
文摘Wenlan FENG,Pierre MARIOTTE,Jun GU,XiaodongSONG,JinlingYANG,Fei YANG,Yuguo ZHAOand Ganlin ZHANG In the fourth and fifth lines of the study area section on Page 903,the mean annual temperature(MAT)and precipitation(MAP)values are incorrect.They should be—17 to 24.2°C and 18.3 to 3155 mm,respectively.
基金supported by the Postgraduate Education Reform and Quality Improvement Project of Henan Province,China(Grant No.YJS2023AL004)the Graduate Innovation Project of North China University of Water Resources and Electric Power(Grant No.NCWUYC-202315069)the China National Scholarship Fund organized by the China Scholarship Council(Grant No.202208410337).
文摘The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.
基金supported by the National Key Research and Development Project of China (No. 2016YFD0300801)the National Science and Technology Support Project of China (No. 2012BAD05B00)
文摘Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different application rates of biochar on the cracking pattern and shrinkage characteristics of lime concretion black soil after three wetting and drying cycles.Biochar derived from the corn straw and peanut shell mixture was applied to the soil at rates of 0,50,100,and 150 g kg^(-1)dry weight,representing the treatments T_(0),T_(50),T_(100),and T_(150),respectively.During the wetting and drying cycles,the cracking pattern and shrinkage characteristics of the unamended and amended soil samples were recorded.Application of biochar significantly increased soil organic carbon content in the samples.During soil desiccation,biochar significantly reduced the rate of water loss.Cracks propagated slowly and stopped due to the relatively higher water content in the soil applied with biochar.The cracking area density(ρ_c),equivalent width,fractal dimension,and cracking connectivity index decreased during the drying process with increasing application rate of biochar.Theρ_(c )value of the T_(50),T_(100),and T_(150) treatments decreased by 33.6%,52.1%,and 56.9%,respectively,after three wetting and drying cycles,whereas the T_(0) treatment exhibited a marginal change.The coefficient of linear extensibility,an index used to describe onedimentional shrinkage,of the unamended soil sample(T_(0))was approximately 0.23.Application of 100 and 150 g kg^(-1)biochar to the soil significantly reduced the shrinkage capacity by 41.45%and 45.54%,respectively.The slope of the shrinkage characteristics curve,which indicates the ralationship between soil void ratio and moisture ratio,decreased with increase in the application rate of biochar.Furthermore,compared with the T_(0) treatment,the proportional shrinkage zone of the shrinkage characteristic curve of the T_(50),T_(100),and T_(150) treatments decreased by 5.8%,13.1%,and 12.1%,respectively.Differences were not observed in the moisture ratio at the maximum curvature of the shrinkage characteristic curve among the treatments.The results indicate that biochar can alter the cracking pattern and shrinkage characteristics of lime concretion black soil.However,the effects of biochar on the shrinkage of lime concretion black soil are dependent on the number of wetting and drying cycles.
文摘Multipurpose tree species (MPTs) were studied in an agroforestry arboretum under subtropical humid climate in Northeast India. Out of 12 MPTs planted under agroforestry systems, Acacia auriculiformis in spacing of 2 m × 2 m (2500 stems·hm^-2) could have the potentiality to meet the timber/fuelwood requirement due to its high wood production of 635 m^3·hm^-2 with mean annual increment (MAI) of 2.54×10^-2 m^3.treel.a^-1 in a short rotation period of 10 years. Thus, A. auriculiformis is a short rotation forest tree species suitable to grow in subtropical humid climate. On the other hand, at 16 years of age, Eucalyptus hybrid and Michelia champaca in spacing of 3 m × 3 m (1111 stems.hm^2) produced appreciably high timber volume of 315 m^3.hm^-2 and 165 m^3.hm^-2 with MAI of 1.77×10^-2 m^3.tree^-1·a^-1 and 0.92×10.2 m^3.tree^-1.a^-1, respectively. At 16 years of age, Gmelina arborea produced a timber volume of 147 m^3.hm^-2 with MAI of 1.47×10^-2 m^3.tree^-1.a^-1 followed by Samania saman (140 m^3.hm^-2), Albizziaprocera (113 m^3·hm^-2) and Tectona grandis (79 m3.hm^-2) with MAI of 1.40, 1.13 and 0.78 × 10^-2 m^3 .tree^-1a^-1, respectively in 4 m × 4 m spacing (625 stems.hm^-2). Gliricidia maculata and Leucaena leucocephala could be used as live fences around the farm boundary to supply their N-rich leaves for mulch as well as manure to crops. In agroforestry arboretum, direct seeded upland rice (Oryza sativa - variety, AR-11), groundnut (Arachis hypogaea - variety, JL-24) and sesamum (Sesamum indicum - variety, B-67) were grown during the initial period upto 8 years of tree establishment. Under other MPTs, there was a reduction in crop productivity as compared to open space. After 8 years of tree establishment, horti-silvi and silvi-pastoral systems were developed and pineapple (Ananas comosus - variety Queen), turmeric (Curcuma longa -variety RCT -1) and cowpea (Vigna sinensis - variety Pusa Barsati) as forage crop were raised. The productivity of pineapple, turmeric and cowpea was comparatively high under Azadirachta indica. The productivity of horticultural and forage crops in association with trees such as G. arborea, A. procera, S. saman, T. grandis and M. champaca of high timber value could be harnessed as viable agroforestry systems. Changes in soil properties were also monitored. Amelioration of soil acidity, increase in soil organic carbon, and enhanced humification of soil humus, high nutrient availability, low soil erodibility and high surface soil (0-15 cm) moisture availability were noted in soils under MPTs.
基金jointly supported by the National Natural Science Foundation of China(41621001,32061123006)the Fund of Ningxia Independent Innovation on Agriculture Science and Technology,China(NGSB-2021-14-04).
文摘Soil salinization has adverse effects on the soil physical-chemical characteristics.However,little is known about the changes in soil salt ion concentrations and other soil physical-chemical characteristics within the Qarhan Salt Lake and at different soil depths in the surrounding areas.Here,we selected five sampling sites(S1,S2,S3,S4,and S5)alongside the Qarhan Salt Lake and in the Xidatan segment of the Kunlun Mountains to investigate the relationship among soil salt ion concentrations,soil physical-chemical characteristics,and environmental variables in April 2019.The results indicated that most sites had strongly saline and very strongly saline conditions.The main salt ions present in the soil were Na^(+),K^(+),and Cl^(-).Soil nutrients and soil microbial biomass(SMB)were significantly affected by the salinity(P<0.05).Moreover,soil salt ions(Na^(+),K^(+),Ca2+,Mg^(2+),Cl^(-),CO_(3)^(2-),SO_(4)^(2-),and HCO_(3)^(-))were positively correlated with electrical conductivity(EC)and soil water content(SWC),but negatively related to altitude and soil depth.Unlike soil salt ions,soil nutrients and SMB were positively correlated with altitude,but negatively related to EC and SWC.Moreover,soil nutrients and SMB were negatively correlated with soil salt ions.In conclusion,soil nutrients and SMB were mainly influenced by salinity,and were related to altitude,soil depth,and SWC in the areas from the Qarhan Salt Lake to the Xidatan segment.These results imply that the soil quality(mainly evaluated by soil physical-chemical characteristics)is mainly influenced by soil salt ions in the areas surrounding the Qarhan Salt Lake.Our results provide an accurate prediction of how the soil salt ions,soil nutrients,and SMB respond to the changes along a salt gradient.The underlying mechanisms controlling the soil salt ion distribution,soil nutrients,and SMB in an extremely arid desert climate playa should be studied in greater detail in the future.
基金Supported by National Land and Resources Investigation Program(200414200005)~~
文摘[Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide scientific basis for the musmelon planting in this area. [Method] Root system soil sample and plow pan sample were collected from the main muskmelon planting area in Hetao irrigation area, so as to analyze the contents of heavy metal elements. By comparing with the Soft Environmental Quality Standard (GB15618-1995), the research explored whether the heavy metal elements in root system met the national standard. [Result] Heavy metal elements in root system soil had the maximum content in recession area of Yellow River, followed by saline soils. The content of heavy metal elements in chestnut-brown soil was the minimum. Harmful elements As, Cd, Hg, F and Pb in anthropogenic-alluvial soil of Hetao irrigation area showed enrichment characteristics in earth surface, with zonality vertically. Trace elements Cu and Zn, and beneficial elements P, K20, CaO, MgO and Se showed depletion. In anthropogenic-aUuvial soil of Ulansuhai of the Yellow River, harmful elements As and Cd showed significant enrichment in root system soil, while other elements showed depletion or was close to background value. In soil of plow pan, both beneficial component and harmful component showed enrichment characteristics. [Conclusion] Hetao irrigation area has the ideal geochemical conditions and heavy metal elements in muskmelon area meet the national standards.
基金supported by the NSFC Key Projects of International Cooperation and Exchanges(No.42020104006)the National Key Research and Development Program of China(No.2023YFC3007004).
文摘Numerous incidents and failures of landslides in reservoir areas are attributed to water level fluctuations,which frequently induce cyclic changes in seepage pressure within the soil masses.Under such complex cyclic seepage conditions,the hydro-mechanical behavior of sliding-zone soils may significantly differ from that observed under steady seepage conditions.However,the seepage characteristics and deformation behavior of sliding-zone soils experiencing cyclic seepage pressure are not yet fully understood.In this study,we conduct cyclic seepage pressure tests under isotropic consolidation to investigate the variation in hydraulic conductivity and volumetric strain of sliding-zone soils.The results show that the hydraulic conductivity of the sliding-zone soil samples fluctuatesunder cyclic seepage pressure,with the magnitude increasing as seepage pressure amplitude rises and decreasing with higher confiningpressure.Additionally,the volumetric strain of the sliding-zone soil samples exhibited notable fluctuationsunder cyclic seepage pressure,with the magnitude of the fluctuationsintensifying as the seepage pressure amplitude increased.The cumulative volumetric strain and irrecoverable volumetric strain of the samples are higher compared to those observed under steady seepage pressure.Subsequently,hysteresis loops are classifiedinto three types,each indicating distinct deformation characteristics.Finally,the micromechanism of sliding-zone soil under cyclic seepage pressure,considering the effect of physicochemical reactions on pore structure,is revealed to interpret better the intrinsic mechanism of seepage characteristics and deformation behavior.These findingsprovide a theoretical basis for further accurately evaluating reservoir landslide stability under fluctuatingwater levels.
基金supported by the Natural Science Foundation of Beijing Municipality(No.8222004),Chinathe National Natural Science Foundation of China(No.51978019)+3 种基金the Natural Science Foundation of Henan Province(No.252300420445),Chinathe Doctoral Research Initiation Fund of Henan University of Science and Technology(No.4007/13480062),Chinathe Henan Postdoctoral Foundation(No.13554005),Chinathe Joint Fund of Science and Technology R&D Program of Henan Province(No.232103810082),China。
文摘Sandy cobble soil exhibits pronounced heterogeneity.The assessment of the uncertainty surrounding its properties is crucial for the analysis of settlement characteristics resulting from volume loss during shield tunnelling.In this study,a series of probabilistic analyses of surface and subsurface settlements was conducted considering the spatial variability of the friction angle and reference stiffness modulus,under different volumetric block proportions(Pv)and tunnel volume loss rates(ηt).The non-intrusive random finite difference method was used to investigate the probabilistic characteristics of maximum surface settlement,width of subsurface settlement trough,maximum subsurface settlement,and subsurface soil volume loss rate through Monte Carlo simulations.Additionally,a comparison between stochastic and deterministic analysis results is presented to underscore the significance of probabilistic analysis.Parametric analyses were subsequently conducted to investigate the impacts of the key input parameters in random fields on the settlement characteristics.The results indicate that scenarios with higher Pv or greaterηt result in a higher dispersion of stochastic analysis results.Neglecting the spatial variability of soil properties and relying solely on the mean values of material parameters for deterministic analysis may result in an underestimation of surface and subsurface settlements.From a probabilistic perspective,deterministic analysis alone may prove inadequate in accurately capturing the volumetric deformation mode of the soil above the tunnel crown,potentially affecting the prediction of subsurface settlement.
基金Supported by National Natural Science Foundation of China(30700563)the Middleaged Fund in Qinghai University(2009-QN-07)~~
文摘[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated in this study,and soil available N,P,K,Cu,Zn,organic matter and pH value were also analyzed by routine analysis of soil nutrients in different degraded grasslands.[Result]With the intensification of degraded gradient and the soil depth,the ratio of plant root to soil was decreased gradually.The highest ratio of plant root to soil was in 0-10 cm depth of soil in grassland with different degraded gradients,while its ratio of plant root to soil changed from 0.001 to 0.040 with soil type of loam.Soil chemical characteristic changed in different degraded gradients.The content of available N,P,K reduced significantly with the soil depth and the intensification of degraded gradients.The content of Cu and Zn was relatively lack in degraded grassland.[Conclusion]There is no significant correlation between nutrition content or pH value and the succession degree of degraded grassland.
基金Supported by the Special Fund for the Scientific Research in Public Interest of the Ministry of Land and Resources(201411008)~~
文摘[Objective] To study the soil texture, water storage and related spectral characteristics of composited soil. [Method] 3 different ratios of composited soils was designed by using feldspathic sandstone and sand by 3 different ratios, 1:1(C1), 1:2(C2) and 1:5(C3), and the CK used loess soil and sand by 1:2, then the soil texture, water storage, soil and winter wheat spectral characteristic were measured and analyzed under those treatments in 2010-2013. [Result] (1) With the increasing of the plant- ing year, treatment C1, C2 and C3 all showed decreasing in the proportions of sand and increasing of silt and the CK showed decreasing of clay and increasing of sand, along 1-30 cm soil depth. Treatment C2 showed the proportion of sand, silt and clay were 76.69%, 18.72% and 4.70%, respectively. (2) The water contents of all the treatments were significant different from other in 0-60 cm soil depth, and showed increasing trend with the increasing of sand proportion. Treatment C2 had higher average water content during the 3 years than treatment CK, C1 and C3 by 21.34%, 11.59% and 3.91% in the same soil depth, respectively. (3) In 2013, the spectral reflection curve characters were similar for all treatment of winter wheat at the jointing stage and filling stage along the full-wave band (350-2 500 nm), and the reflectance was higher in the jointing stage than the filling stage; the reflection peak was found around 550 nm, a part of green light wave band. Treatment C2 showed the highest canopy that all treatments had similar spectral curves, and the relative reflectance of soil increased during 350-1 750 nm wave length along with the increase of the sand proportion; for treatment CK, C1, C2 and C3, the soil spectral reflectance (y) and wave length (x) appeared highly correlated relationships, they were y=0.18 71 In(x)-0.979 4, y=0.158 7 In(x)-0.801 2, y=0.177 1 In(x)-0.910 8 and y=0.184 5 In(x)-0.944 5, respectively. [Conclusion] Synthesizing the soil physical properties and related spectral character indices, treatment C2 generated the best combination ratio of feldspathic sandstone and sand.
文摘Mountainous ecosystem soils are subject to colonization nowadays for agri</span><span style="font-family:Verdana;">cultural purposes due to an increasing population in towns making the</span><span style="font-family:Verdana;"> detailed </span><span style="font-family:Verdana;">characterization of such soils indispensable. This work aims to characterize</span><span style="font-family:Verdana;"> the steep slopes soils of the Dschang hills and to evaluate their fertility level for </span><span style="font-family:Verdana;">agricultural valorization. Thus, four soil profiles were dug at various topographic</span><span style="font-family:Verdana;"> positions (summit (SP), shoulder (MP), backslope (BP) and footslope (PP)) following a toposequence. Samples of disturbed and undisturbed soils were taken and analyzed in the laboratory according to standard methods. The Fertility</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Capability</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Classification (FCC) and simple limitation methods were used to identify major agricultural constraints. The main results show that </span><span style="font-family:Verdana;">profiles thickness is moderate, between 0 and 120 cm, with a high sand</span><span style="font-family:Verdana;"> content </span><span style="font-family:Verdana;">(at least 50%) over the entire toposequence, especially at the surface. The</span><span style="font-family:Verdana;"> study site has four types of soils, namely Eutric</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Cambisols (ochric) in SP and L</span><span style="font-family:Verdana;">eptic</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Eutric</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Cambisols (Humic) in MP, Eutric</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Cambisols (Humic) in BP</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and Stagnic</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Oxygleyic</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Dystric</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Gleysols</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">(Humic) in pp. The soils are very acidic at PP, moderately acidic at BP and SP and slightly acidic at MP. Organic matter is higher at the surface than at depth at the topographic segments of MP, BP and PP and low to SP. The C/N ratio is high (>17) in all profiles except P4 </span><span style="font-family:Verdana;">(<10). In addition, the cation exchange capacity (CEC), the sum of</span><span style="font-family:Verdana;"> exchangeable bases, total nitrogen and available phosphorus is low in all profiles. The Ca/</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Mg/K balance in all the profiles shows a cation imbalance and a relatively </span><span style="font-family:Verdana;">high concentration of exchangeable potassium compared to the ideal</span><span style="font-family:Verdana;"> situation (76% Ca, 18% Mg and 6% K). The major constraints to crop production are: aluminum toxicity (a) and nutrients leaching (e), textural discontinuity (LS), flooding (g), low nutrient reserve (k), sand (S), clay (C) and slope (t). Hence the fertility capacity classes of these soils are CCaegk (PP), SSek (BP), SSte (MP) and LSaek (SP). To improve the yield, it will require off-season crop cultivation, fertilization and liming, and earthworks.
基金supported by the National Key High-Tech Program (863) of China (Grant No. 2006AA10Z271)the Key Project of the Guizhou Tobacco Monopoly Administration (2007-7)
文摘In order to identify the principal factors influencing soil water characteristics (SWC) and evaluate SWC effectively, the multivariate-statistical canonical correlation analysis (CCA) method was used to study and analyze the correlation between SWC and soil physical and chemical properties. Twenty-two soil samples were taken from 11 main tobacco-growing areas in Guizhou Province in China and the soil water characteristic curves (SWCC) and basic physical and chemical properties of the soil samples were determined. The results show that: (1) The soil bulk density, soil total porosity and soil capillary porosity have significant effects on SWC of tobacco fiels. Bulk density and total porosity are positively correlated with soil water retention characteristics (SWRC), and soil capillary porosity is positively correlated with soil water supply characteristics (SWSC). (2) Soil samples from different soil layers at the same soil sampling point show similarity or consistency in SWC. Inadequate soil water supply capability and imbalance between SWRC and SWSC are problems of tobacco soil. (3) The SWC of loamy clay are generally superior to those of silty clay loam.
文摘This study aims to characterize the physical and mechanical properties of the soils from the Kenendé,Limbita 1,and Limbita 2 sites,located in the Dubréka prefecture,to develop a composite construction material based on soil and plant fibers that is more resistant to climatic and environmental conditions.To achieve this,soil samples were collected and subjected to various laboratory tests.The study assessed the physical and mechanical properties of these soils to develop a composite construction material incorporating soil and plant fibers.Laboratory tests revealed variations in water absorption capacity and compressive strength depending on the applied pressure(3,4,5 MPa)and the sample’s condition(dry or wet).After a 30-day maturation period,Kenendéexhibited a maximum dry-state strength of 2.66 MPa,while Limbita 1 and Limbita 2 recorded 0.95 MPa and 2.57 MPa,respectively.Soils compacted under high pressure demonstrated better performance,particularly in dry conditions.These results confirm the potential of the soils from the three sites for producing durable construction materials suitable for local climatic conditions,provided they undergo appropriate treatment and maturation,thereby contributing to sustainable construction in Guinea.
基金Supported by Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(14)2099)~~
文摘[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water.
基金This paper was supported by Chinese 863 Plan Water-Saving Agriculture (2002AA2Z4321),the Key Knowledge Innovation Project (SCXZY0103) and The Tenth-five Plan of Liaoning Province (2001212001).
文摘Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.
文摘In this paper ecogeographical characteristics of forest soil animal i n mountainous districts of the eastern China was analyzed, and results show that soil fauna was very rich in diversified forest habitat, moreover, as times and spaces varied, their compositions and abundance changed obviously too. Forest so il animal decreased gradually in taxa and individual number from the tropics to cold-temperature zone, and they are higher in zonal forest habitat than in other ones on the same mountain. Forest soil animal also got gradually less with incr easing of depth in soil layer, and distributed principally in surface layer. The activities of human had strong affection on faunal composition and diversity of soil animal. On the tropics and subtropics mountains, forest soil animal are le ss in spring-summer than in autumn-winter, whereas they are more in summer-autum n than in winter-spring from warm-temperate zone to cold-temperate zone.
基金supported by the National Natural Science Foundation of China (No.41101211,41071157,41171205)the Foundation for Excellent Young Scientist in Guangdong Academy of Sciences (No.rcjj201101)
文摘Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and more importantly global climate change. Electrochemical methods were first employed to evaluate DOM redox properties, and spectroscopic approaches were utilized to obtain information concerning its composition and structure. DOM was extracted from a forest soil profile with five horizons. Differential pulse voltammetry indicated that there were more redox-active moieties in the DOM from upper horizons than in that from lower horizons. Cyclic voltammetry further showed that these moieties were reversible in electron transfer. Chronoamperometry was employed to quantify the electron transfer capacity of DOM, including electron acceptor capacity and electron donor capacity, both of which decreased sharply with increasing depth. FT-IR, UV-Vis and fluorescence spectra results suggested that DOM from the upper horizons was enriched with aromatic and humic structures while that from the lower horizons was rich in aliphatic carbon, which supported the findings obtained by electrochemical approaches. Electrochemical approaches combined with spectroscopic methods were applied to evaluate the characteristics of DOM extracted along a forest soil profile. The electrochemical properties of DOM, which can be rapidly and simply obtained, provide insight into the migration and transformation of DOM along a soil profile and will aid in better understanding of the biogeochemical role of DOM in natural environments.
基金Supported by Key Scientific and Technological Project of Henan Province(072102150001)~~
文摘[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture were set to measure their photosynthetic indices, chlorophyll content and root vigor, and to observe their leaf tissue structure and stomatal characteristics. [Result] The findings indicated that there are no differences in the leaf physiological indices between bowl lotus under hydroponics and soil culture, while the leaf stomata of hydroponic bowl lotus is bigger and its amount is larger than that of soil-culture bowl lotus. At the same time, the ratio of the palisade tissue thickness to spongy tissue thickness is small,and its leaf tissue structure is loose. The root vigor of hydroponic bowl lotus reached its summit earlier, then began to drop. Whereas, the root activity of soil-culture lotus sustained increasing, with vigorous growth. [Conclusion] Therefore, it indicated that hydroponic bowl lotus can adapt to the aquatic-culture environment well and quickly, meanwhile, it also enters into its aging period quickly and its growth cycle gets shorter.