期刊文献+
共找到1,974篇文章
< 1 2 99 >
每页显示 20 50 100
A Survey of Link Failure Detection and Recovery in Software-Defined Networks
1
作者 Suheib Alhiyari Siti Hafizah AB Hamid Nur Nasuha Daud 《Computers, Materials & Continua》 SCIE EI 2025年第1期103-137,共35页
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance... Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods. 展开更多
关键词 software defined networking failure detection failure recovery RESTORATION PROTECTION
在线阅读 下载PDF
A Decentralized and TCAM-Aware Failure Recovery Model in Software Defined Data Center Networks
2
作者 Suheib Alhiyari Siti Hafizah AB Hamid Nur Nasuha Daud 《Computers, Materials & Continua》 SCIE EI 2025年第1期1087-1107,共21页
Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive s... Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments. 展开更多
关键词 software defined networking failure detection failure recovery RESTORATION protection TCAM size
在线阅读 下载PDF
Threshold-Based Software-Defined Networking(SDN)Solution for Healthcare Systems against Intrusion Attacks
3
作者 Laila M.Halman Mohammed J.F.Alenazi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1469-1483,共15页
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ... The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic. 展开更多
关键词 network resilience network management attack prediction software defined networking(sdn) distributed denial of service(DDoS) healthcare
在线阅读 下载PDF
Open-Source Software Defined Networking Controllers:State-of-the-Art,Challenges and Solutions for Future Network Providers
4
作者 Johari Abdul Rahim Rosdiadee Nordin Oluwatosin Ahmed Amodu 《Computers, Materials & Continua》 SCIE EI 2024年第7期747-800,共54页
Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t... Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article. 展开更多
关键词 ONOS open source software sdn software defined networking
在线阅读 下载PDF
Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture
5
作者 Khawaja Tahir Mehmood Shahid Atiq +2 位作者 Intisar Ali Sajjad Muhammad Majid Hussain Malik M.Abdul Basit 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1673-1708,共36页
Software-Defined Networking(SDN),with segregated data and control planes,provides faster data routing,stability,and enhanced quality metrics,such as throughput(Th),maximum available bandwidth(Bd(max)),data transfer(DT... Software-Defined Networking(SDN),with segregated data and control planes,provides faster data routing,stability,and enhanced quality metrics,such as throughput(Th),maximum available bandwidth(Bd(max)),data transfer(DTransfer),and reduction in end-to-end delay(D(E-E)).This paper explores the critical work of deploying SDN in large-scale Data Center Networks(DCNs)to enhance its Quality of Service(QoS)parameters,using logically distributed control configurations.There is a noticeable increase in Delay(E-E)when adopting SDN with a unified(single)control structure in big DCNs to handle Hypertext Transfer Protocol(HTTP)requests causing a reduction in network quality parameters(Bd(max),Th,DTransfer,D(E-E),etc.).This article examines the network performance in terms of quality matrices(bandwidth,throughput,data transfer,etc.),by establishing a large-scale SDN-based virtual network in the Mininet environment.The SDN network is simulated in three stages:(1)An SDN network with unitary controller-POX to manage the data traffic flow of the network without the server load management algorithm.(2)An SDN network with only one controller to manage the data traffic flow of the network with a server load management algorithm.(3)Deployment of SDN in proposed control arrangement(logically distributed controlled framework)with multiple controllers managing data traffic flow under the proposed Intelligent Sensing Server Load Management(ISSLM)algorithm.As a result of this approach,the network quality parameters in large-scale networks are enhanced. 展开更多
关键词 software defined networking quality of service hypertext transfer protocol data transfer rate LATENCY maximum available bandwidth server load management
在线阅读 下载PDF
MGOKA:A Multi-Objective Optimization Algorithm for Controller Placement Problem Combining Network Partition with Cluster Fusion in Software Defined Network
6
作者 CHEN Jue XIAO Changwei +1 位作者 QIU Xihe LÜ Wenjing 《Wuhan University Journal of Natural Sciences》 CSCD 2024年第6期589-599,共11页
Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Plac... Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Placement Problem(CPP)must be solved carefully as it directly affects the whole network performance.This paper proposes a Multi-objective Greedy Optimized K-means Algorithm(MGOKA)to solve this problem to optimize worst-case and average delay between switches and controllers as well as synchronization delay and load balance among controllers for Wide Area Networks(WAN).MGOKA combines the process of network partition based on the K-means algorithm with cluster fusion based on the greedy algorithm and designs a normalization strategy to convert a multi-objective into a single-objective optimization problem.The simulation results depict that in different network scales with different numbers of controllers,the relative optimization rate of our proposed algorithm compared with K-means,K-means++,and GOKA can reach up to 101.5%,109.9%,and 79.8%,respectively.Moreover,the error rate between MGOKA and the global optimal solution is always less than 4%. 展开更多
关键词 software defined network Controller Placement Problem propagation delay load balance multi-objective optimization
原文传递
基于图神经网络的SDN路由算法优化 被引量:1
7
作者 张晓莉 汤颖琪 宋婉莹 《电讯技术》 北大核心 2025年第1期18-24,共7页
针对现有路由方案不适合学习图形结构信息,对陌生拓扑适应性不佳的问题,提出了一种基于图神经网络的软件定义网络(Software Defined Network,SDN)路由算法G-PPO。引入近端策略优化(Proximal Policy Optimization,PPO)强化学习算法实现... 针对现有路由方案不适合学习图形结构信息,对陌生拓扑适应性不佳的问题,提出了一种基于图神经网络的软件定义网络(Software Defined Network,SDN)路由算法G-PPO。引入近端策略优化(Proximal Policy Optimization,PPO)强化学习算法实现模型训练,利用消息传递神经网络(Massage Passing Neural Network,MPNN)对网络拓扑进行学习,通过调整链路权重完成路由路径的调整。G-PPO将图神经网络对网络拓扑信息的感知能力和深度强化学习的自主学习能力有效结合,提升路由策略的性能。实验结果表明,与相关算法比较,所提算法的平均时延和丢包率、网络链路利用率和吞吐量指标均为最优。在3种不同拓扑上,该算法较其他算法最少提升10.5%吞吐量,最多提升95.6%丢包率,表明所提算法具有更好的适应不同网络拓扑的能力。 展开更多
关键词 软件定义网络 路由优化 图神经网络 深度强化学习 近端策略优化
在线阅读 下载PDF
基于鲸鱼优化算法改进的SDN网络流量预测模型 被引量:4
8
作者 杨桂芹 刘志琦 +1 位作者 张国庆 张伟霞 《兰州交通大学学报》 2025年第2期19-29,共11页
软件定义网络(SDN)环境下,网络流量基于拓扑结构的复杂性和时间动态特性,导致流量预测面临空间与时间特征带来的双重挑战。为解决这一问题,提出了一种基于鲸鱼算法(WOA)的流量预测模型。该模型通过融合卷积神经网络(CNN)对空间特征的提... 软件定义网络(SDN)环境下,网络流量基于拓扑结构的复杂性和时间动态特性,导致流量预测面临空间与时间特征带来的双重挑战。为解决这一问题,提出了一种基于鲸鱼算法(WOA)的流量预测模型。该模型通过融合卷积神经网络(CNN)对空间特征的提取能力和长短期记忆网络(LSTM)对时间序列特征的捕捉能力,通过WOA优化模型超参数来提高预测精度。最后与CNN-LSTM、PSO-LSSVM等方法进行对比。结果表明,WOA-CNN-LSTM模型在MAE、RMSE和MAPE指标上分别较CNN-LSTM模型相对减少80.91%、69.21%和72.91%,较PSO-LSSVM相对减少40.29%、19.10%和34.76%。实验验证了该模型在SDN流量预测中的良好性能,为复杂网络环境下的流量预测提供了新思路。 展开更多
关键词 软件定义网络 流量预测 鲸鱼算法 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于动态限制策略的SDN中IP欺骗攻击缓解技术
9
作者 王坤 付钰 +2 位作者 段雪源 刘涛涛 周静华 《海军工程大学学报》 北大核心 2025年第2期9-16,25,共9页
针对传统的IP欺骗攻击缓解方法存在运算开销大、缺乏灵活性等问题,提出了一种基于动态限制策略的软件定义网络(software defined network,SDN)中IP欺骗攻击缓解方法。首先,利用Packet-In消息中三元组信息回溯攻击路径,定位IP欺骗攻击源... 针对传统的IP欺骗攻击缓解方法存在运算开销大、缺乏灵活性等问题,提出了一种基于动态限制策略的软件定义网络(software defined network,SDN)中IP欺骗攻击缓解方法。首先,利用Packet-In消息中三元组信息回溯攻击路径,定位IP欺骗攻击源头主机;然后,由控制器制定动态限制策略对连接攻击源头主机的交换机端口的新流转发功能进行限制,待限制期满再恢复其转发新流的功能,限制期的大小随着被检测为攻击源的次数而增长。研究结果表明:这种动态的限制策略可阻隔攻击流进入SDN网络,从而有效避免SDN交换机、控制器以及链路过载;由于在限制期间无需再对这些限制的交换机端口进行实时监测,该方法在应对长时攻击时较传统方法具有更高的缓解效率和更少的资源消耗。 展开更多
关键词 软件定义网络 IP欺骗 攻击溯源 动态缓解
在线阅读 下载PDF
基于协同决策的SDN交换机迁移方案
10
作者 熊兵 夏红芳 +3 位作者 赵锦元 张锦 赵宝康 李克勤 《计算机学报》 北大核心 2025年第7期1601-1616,共16页
在软件定义网络(Software-Defined Networking,SDN)中,为解决控制器负载随网络流量波动而变化引起控制平面负载不均衡,甚至控制器过载的问题,本文提出一种基于协同决策的SDN交换机迁移方案,在保证控制平面负载均衡的同时,尽可能降低控... 在软件定义网络(Software-Defined Networking,SDN)中,为解决控制器负载随网络流量波动而变化引起控制平面负载不均衡,甚至控制器过载的问题,本文提出一种基于协同决策的SDN交换机迁移方案,在保证控制平面负载均衡的同时,尽可能降低控制平面和数据平面之间的平均链路距离,以提升SDN网络性能。该方案首先在全面感知SDN网络运行状态的基础上,以需迁出交换机的过载控制器为中心,将邻近可用的控制器作为候选迁移目标,进而组成协同决策域。然后,综合考虑候选目标控制器的负载接收能力、过载控制器管理的交换机负载水平以及候选目标控制器和交换机之间的链路距离,逐步协商选出最佳交换机-控制器组合,最终形成SDN交换机迁移方案。最后,实验模拟仿真典型的SDN网络拓扑,对本文所提的SDN交换机迁移方案进行性能验证。实验结果表明:本文所提方案的过载率、平均链路距离和负载失衡因子比现有最优方案分别降低78.1%、8%和27.4%,可显著提升控制平面的可靠性和健壮性,优化SDN网络整体性能。 展开更多
关键词 软件定义网络 交换机迁移 协同决策 平均链路距离 负载均衡程度
在线阅读 下载PDF
基于K-means++和粒子群算法的SDN多控制器部署方法 被引量:1
11
作者 徐慧 吴美连 《湖北工业大学学报》 2025年第1期43-48,共6页
针对软件定义网络中的多控制器部署问题,首先通过K-means++算法对网络节点聚类,得到网络中初始控制域和控制器位置,然后使用粒子群算法以最小化时延和负载均衡为优化目标,多个粒子并行搜索最优解,进一步优化控制域和控制器位置。在小、... 针对软件定义网络中的多控制器部署问题,首先通过K-means++算法对网络节点聚类,得到网络中初始控制域和控制器位置,然后使用粒子群算法以最小化时延和负载均衡为优化目标,多个粒子并行搜索最优解,进一步优化控制域和控制器位置。在小、中、大型网络拓扑上与随机算法、K-means++算法、粒子群算法的多控制器部署方法比较,仿真结果表明,在中小型网络中,比其他3种算法在平均传播时延和负载均衡上更加稳定且时延更低,在大型网络中,平均传播时延,最坏传播时延和控制器的负载均衡上均优于其他3种算法。 展开更多
关键词 软件定义网络 多控制器部署 K-means++ 粒子群算法 时延 负载均衡
在线阅读 下载PDF
基于多目标的工业SDN智能路由算法优化
12
作者 张晓莉 刘夏茜 +1 位作者 雷雨声 王斌 《电讯技术》 北大核心 2025年第10期1571-1578,共8页
针对网络服务质量的多目标优化问题以及难解的网络图结构问题,提出了一种基于多智能体深度强化学习联合图神经网络的工业软件定义网络智能路由算法。该算法主要采用多智能体系统通过分布式协同控制,优化业务时延要求、网络通信量、链路... 针对网络服务质量的多目标优化问题以及难解的网络图结构问题,提出了一种基于多智能体深度强化学习联合图神经网络的工业软件定义网络智能路由算法。该算法主要采用多智能体系统通过分布式协同控制,优化业务时延要求、网络通信量、链路负载3个指标,针对一般无法实现网络场景通用化的模型,采用图神经网络进行图结构消息传递,同时采用动态权重配比方法对多目标问题进行整合,优化网络性能。实验结果表明,相对于深度Q网络(Deep Q-network,DQN)算法,所提算法在满足时延要求的业务流数量上平均增加了19.70%,在网络通信量上提高了17.35%,在链路负载平衡上实现了12.04%的改进,有效提高了网络服务质量和性能。 展开更多
关键词 软件定义网络(sdn) 多目标优化 多智能体深度强化学习 网络服务质量
在线阅读 下载PDF
基于SDN的智慧校园自适应安全架构研究
13
作者 黄超 封旭 《软件》 2025年第6期18-21,共4页
随着智慧校园建设的推进,网络安全威胁展现出动态化与多样化交织的显著特征。传统的网络安全架构由于其静态化特征以及设备协同能力不足等问题,在应对实时变化的安全风险时存在明显困难。本文构建了一种基于软件定义网络(SDN)的智慧校... 随着智慧校园建设的推进,网络安全威胁展现出动态化与多样化交织的显著特征。传统的网络安全架构由于其静态化特征以及设备协同能力不足等问题,在应对实时变化的安全风险时存在明显困难。本文构建了一种基于软件定义网络(SDN)的智慧校园自适应安全架构。该架构借助SDN所具备的集中控制与可编程特性,实现安全策略的动态生成以及自动调整。从架构组成来看,其涵盖了基础设施层、智能控制层、安全服务层和应用层四个主要层次。通过对网络流量状况和安全态势的动态变化进行实时分析,该架构能够自适应地对安全策略做出相应调整,有效地提升了智慧校园网络的安全防护水平,为智慧校园的网络安全防护提供了具有创新性的解决方案。 展开更多
关键词 软件定义网络(sdn) 智慧校园 自适应安全架构 网络安全
在线阅读 下载PDF
基于深度强化学习的工业SDN网络切片资源分配
14
作者 张晓莉 雷雨声 +1 位作者 刘夏茜 王斌 《电讯技术》 北大核心 2025年第8期1221-1230,共10页
针对工业物联网中业务需求多样性和服务质量(Quality of Service,QoS)要求差异性导致的网络资源利用低问题,提出一种基于深度强化学习的网络切片资源分配策略。该策略运用深度强化学习优化网络切片资源分配的准入控制,通过智能体在特定... 针对工业物联网中业务需求多样性和服务质量(Quality of Service,QoS)要求差异性导致的网络资源利用低问题,提出一种基于深度强化学习的网络切片资源分配策略。该策略运用深度强化学习优化网络切片资源分配的准入控制,通过智能体在特定时间窗口内处理资源请求,并根据不同网络切片的QoS要求及请求准入结果进行资源的动态分配。实验结果表明,所提策略相比基准算法在提高网络收益、资源利用率和接收率方面分别提升了8.33%、9.84%和8.57%。该策略能够在保证服务质量的同时提高整个网络的效率和性能。 展开更多
关键词 工业物联网(IIOT) 软件定义网络 网络切片 资源分配 准入控制 深度强化学习
在线阅读 下载PDF
SDN中基于流长度分布和多控制器的轻量级流表空间优化方案
15
作者 何亨 王佳 +1 位作者 彭哲喆 聂雷 《小型微型计算机系统》 北大核心 2025年第10期2463-2470,共8页
为了支持软件定义网络(SDN)中高速数据包转发,商用OpenFlow交换机通常使用三元内容寻址存储器(TCAM)来存储流表项.然而,交换机中TCAM容量有限,可能导致流表溢出,难以满足大规模网络的性能需求.基于互联网上流量长度的实际分布,本文提出... 为了支持软件定义网络(SDN)中高速数据包转发,商用OpenFlow交换机通常使用三元内容寻址存储器(TCAM)来存储流表项.然而,交换机中TCAM容量有限,可能导致流表溢出,难以满足大规模网络的性能需求.基于互联网上流量长度的实际分布,本文提出了一种SDN中基于多控制器的轻量级流表空间优化方案(FODC).FODC设计了一种轻量级的大象流检测算法和混合转发策略,基于概率性数据结构使控制器能快速准确区分数据包属于老鼠流还是大象流,老鼠流由控制器通过Packet-Out消息直接转发,大象流通过在交换机上安装流表项转发.同时,设计了一种基于Gossip协议的分布式多控制器架构和相关算法,实现多个控制器间负载均衡和协同工作.仿真实验表明,FODC可以有效缓解OpenFlow交换机流表空间受限的问题,具有较好的扩展性,并快速实现多控制器负载均衡,满足大规模网络的性能需求. 展开更多
关键词 软件定义网络 流表空间优化 流长度分布 多控制器架构
在线阅读 下载PDF
SDN中基于SA-GRU的DDoS攻击检测
16
作者 杨桂芹 张国庆 《兰州交通大学学报》 2025年第5期10-20,共11页
软件定义网络(SDN)因其集中式的架构,使其容易受到分布式拒绝服务(DDoS)攻击。许多检测方法侧重模型的性能而忽略了特征维度对检测的影响,导致模型受到噪声干扰。针对高维网络流量数据中存在的特征维度冗余使模型检测性能降低的问题,提... 软件定义网络(SDN)因其集中式的架构,使其容易受到分布式拒绝服务(DDoS)攻击。许多检测方法侧重模型的性能而忽略了特征维度对检测的影响,导致模型受到噪声干扰。针对高维网络流量数据中存在的特征维度冗余使模型检测性能降低的问题,提出了一种基于顺序注意力机制(SA)的动态特征选择机制,并将其与门控循环单元(GRU)融合,构建协同检测模型。SA机制对预处理后的数据集进行了特征选择,通过动态调整各特征权重,有效过滤了无关噪声,达到了特征降维的目的,GRU模块通过捕获网络流量中长短期时序依赖关系,建模数据流的状态转移规律,增强模型对攻击流量的敏感性。相较于传统模型和近年提出的DDoS攻击检测方法,本文所提模型在数据集CICIDS2017、CICDDoS2019上的检测F1分数分别达到了99.84%和99.91%,优于现有方法,且在测试中表现出较高的效率,满足了DDoS攻击检测对准确性与实时响应的要求。 展开更多
关键词 软件定义网络 分布式拒绝服务 顺序注意力机制 门控循环单元
在线阅读 下载PDF
Security Monitoring and Management for the Network Services in the Orchestration of SDN-NFV Environment Using Machine Learning Techniques 被引量:2
17
作者 Nasser Alshammari Shumaila Shahzadi +7 位作者 Saad Awadh Alanazi Shahid Naseem Muhammad Anwar Madallah Alruwaili Muhammad Rizwan Abid Omar Alruwaili Ahmed Alsayat Fahad Ahmad 《Computer Systems Science & Engineering》 2024年第2期363-394,共32页
Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne... Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment. 展开更多
关键词 software defined network network function virtualization network function virtualization management and orchestration virtual infrastructure manager virtual network function Kubernetes Kubectl artificial intelligence machine learning
在线阅读 下载PDF
基于深度强化学习的在线并行SDN路由优化算法研究 被引量:2
18
作者 吴宗明 曹继军 汤强 《计算机科学》 北大核心 2025年第S1期783-791,共9页
传统基于深度强化学习(DRL)的SDN流量工程模型路由行为往往不可预测,并且传统基于DRL的路由方案简单地将DRL算法应用于通信网络系统中是不可靠的。为此,提出了一种基于DRL的在线并行SDN路由优化算法,通过可靠地利用具有试错性质的DRL路... 传统基于深度强化学习(DRL)的SDN流量工程模型路由行为往往不可预测,并且传统基于DRL的路由方案简单地将DRL算法应用于通信网络系统中是不可靠的。为此,提出了一种基于DRL的在线并行SDN路由优化算法,通过可靠地利用具有试错性质的DRL路由算法来提高网络性能。该算法在SDN框架中采用在线并行的路由决策和线下训练相结合的方法来解决SDN路由优化问题。该方法能缓解由于深度强化学习模型尚未收敛以及探索过程所带来的可靠性问题,一定程度上也能缓解深度强化学习智能路由模型不可解释性以及网络突发状况下路由行为不可靠性所带来的负面影响。通过在一个真实网络拓扑上进行大量实验来评估该在线并行SDN路由优化算法的性能。实验结果表明,所提出的在线并行SDN路由优化算法获得的网络性能优于传统的基于DRL的路由算法和OSPF算法。 展开更多
关键词 软件定义网络 深度强化学习 路由优化
在线阅读 下载PDF
A Methodology for Reliability of WSN Based on Software Defined Network in Adaptive Industrial Environment 被引量:7
19
作者 Ying Duan Wenfeng Li +2 位作者 Xiuwen Fu Yun Luo Lin Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期74-82,共9页
As communication technology and smart manufacturing have developed, the industrial internet of things(IIo T)has gained considerable attention from academia and industry.Wireless sensor networks(WSNs) have many advanta... As communication technology and smart manufacturing have developed, the industrial internet of things(IIo T)has gained considerable attention from academia and industry.Wireless sensor networks(WSNs) have many advantages with broad applications in many areas including environmental monitoring, which makes it a very important part of IIo T. However,energy depletion and hardware malfunctions can lead to node failures in WSNs. The industrial environment can also impact the wireless channel transmission, leading to network reliability problems, even with tightly coupled control and data planes in traditional networks, which obviously also enhances network management cost and complexity. In this paper, we introduce a new software defined network(SDN), and modify this network to propose a framework called the improved software defined wireless sensor network(improved SD-WSN). This proposed framework can address the following issues. 1) For a large scale heterogeneous network, it solves the problem of network management and smooth merging of a WSN into IIo T. 2) The network coverage problem is solved which improves the network reliability. 3) The framework addresses node failure due to various problems, particularly related to energy consumption.Therefore, it is necessary to improve the reliability of wireless sensor networks, by developing certain schemes to reduce energy consumption and the delay time of network nodes under IIo T conditions. Experiments have shown that the improved approach significantly reduces the energy consumption of nodes and the delay time, thus improving the reliability of WSN. 展开更多
关键词 Industrial internet of things(IIo T) RELIABILITY software defined network(sdn) wireless sensor network(WSN)
在线阅读 下载PDF
A Novel Load Balancing Strategy of Software-Defined Cloud/Fog Networking in the Internet of Vehicles 被引量:13
20
作者 Xiuli He Zhiyuan Ren +1 位作者 Chenhua Shi Jian Fang 《China Communications》 SCIE CSCD 2016年第S2期140-149,共10页
The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networ... The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture. 展开更多
关键词 internet of vehicles cloud computing cloud/fog network software defined networking load balancing
在线阅读 下载PDF
上一页 1 2 99 下一页 到第
使用帮助 返回顶部