期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
非高斯冲激干扰下基于Softplus函数的核自适应滤波算法 被引量:4
1
作者 火元莲 王丹凤 +2 位作者 龙小强 连培君 齐永锋 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第2期409-415,共7页
针对非高斯环境下一般自适应滤波算法性能严重下降问题,本文提出了一种基于Softplus函数的核分式低次幂自适应滤波算法(kernel fractional lower algorithm based on Softplus function,SP-KFLP),该算法将Softplus函数与核分式低次幂准... 针对非高斯环境下一般自适应滤波算法性能严重下降问题,本文提出了一种基于Softplus函数的核分式低次幂自适应滤波算法(kernel fractional lower algorithm based on Softplus function,SP-KFLP),该算法将Softplus函数与核分式低次幂准则相结合,利用输出误差的非线性饱和特性通过随机梯度下降法更新权重.一方面利用Softplus函数的特点在保证了SP-KFLP算法具有良好的抗脉冲干扰性能的同时提高了其收敛速度;另一方面将低次幂误差的倒数作为权重向量更新公式的系数,利用误差突增使得权重向量不更新的方法来抵制冲激噪声,并对其均方收敛性进行了分析.在系统辨识环境下的仿真表明,该算法很好地兼顾了收敛速度和跟踪性能稳定误差的矛盾,在收敛速度和抗脉冲干扰鲁棒性方面优于核最小均方误差算法、核分式低次幂算法和S型核分式低次幂自适应滤波算法. 展开更多
关键词 核自适应滤波算法 softplus函数 核分式低次幂误差准则 非高斯冲击噪声
在线阅读 下载PDF
一种基于改进Softplus激活函数的卷积神经网络模型 被引量:2
2
作者 孙克雷 虞佳明 孙刚 《阜阳师范学院学报(自然科学版)》 2020年第1期75-79,共5页
为提高Softplus函数在神经网络中的性能,针对Softplus函数的缺点提出了一种基于改进Softplus激活函数的卷积神经网络模型。根据“输出均值接近零的激活函数可以提升神经网络的学习性能”原理,首先对原函数的输出向下平移缓解Softplus激... 为提高Softplus函数在神经网络中的性能,针对Softplus函数的缺点提出了一种基于改进Softplus激活函数的卷积神经网络模型。根据“输出均值接近零的激活函数可以提升神经网络的学习性能”原理,首先对原函数的输出向下平移缓解Softplus激活函数的均值偏移现象;然后对调整后的输出乘以一个参数调整函数在正数部份的坡度和负数部分的饱和点位置,以缓解在训练过程中出现的梯度消失/溢出现象。最后在MNIST、CIFAR-10和CIFAR-100数据集上的实验结果表明,同其它常用激活函数相比,改进后的Softplus函数取得了较好的识别率。 展开更多
关键词 卷积神经网络 激活函数 softplus函数 梯度消失 均值偏移
在线阅读 下载PDF
基于Softplus函数的双隐含层BP神经网络的公路客运量预测 被引量:4
3
作者 徐森 崔舒为 《南华大学学报(自然科学版)》 2020年第1期88-92,共5页
为了提高预测模型的精度,提出一种基于Softplus激活函数的双隐含层BP神经网络的预测方法,提高了模型的非线性学习和泛化能力及预测精度,并改善了网络性能。将该方法应用于公路客运量实际预测中进行有效性验证,结果表明该方法对公路客运... 为了提高预测模型的精度,提出一种基于Softplus激活函数的双隐含层BP神经网络的预测方法,提高了模型的非线性学习和泛化能力及预测精度,并改善了网络性能。将该方法应用于公路客运量实际预测中进行有效性验证,结果表明该方法对公路客运量有更好的非线性拟合能力和预测准确性。 展开更多
关键词 softplus函数 双隐含层 BP神经网络 公路客运量
在线阅读 下载PDF
基于Softplus函数的神经网络的Reluplex算法验证研究
4
作者 陆明远 侯春燕 王劲松 《信息安全研究》 2022年第9期917-924,共8页
形式化验证是计算机科学中运用数理逻辑的方式验证某个系统是否可行的方法,而把形式化验证方法充分应用于神经网络领域,则能更好地研究神经网络的特性与应用.Reluplex是一种对深度神经网络进行验证的单纯形算法,它使用Relu作为激活函数,... 形式化验证是计算机科学中运用数理逻辑的方式验证某个系统是否可行的方法,而把形式化验证方法充分应用于神经网络领域,则能更好地研究神经网络的特性与应用.Reluplex是一种对深度神经网络进行验证的单纯形算法,它使用Relu作为激活函数,而Relu的神经元在训练过程中较脆弱并可能垂死.Softplus是与Relu近似但比Relu更平滑的激活函数,改进了Reluplex算法使之能检验采用Softplus激活函数的深度神经网络,随后获取了在Softplus激活函数下测试鲁棒对抗性得到的实验数据结果,通过与Relu测试结果进行对比,证明了Softplus的测试效率明显高于Relu,它比Relu更平衡,从而让神经网络的学习更快.该研究扩展了神经网络验证算法的功能并展开了相应的对比分析,有利于以后更好地验证和改进深度神经网络,以确保其安全性. 展开更多
关键词 神经网络 形式化验证 激活函数 Relu函数 softplus函数
在线阅读 下载PDF
基于Softplus+HKELM的彩色图像超分辨率算法
5
作者 王亚刚 王萌 《计算机与数字工程》 2020年第1期153-157,共5页
在极限学习机网络结构中,对于隐藏层节点,一般都采用Sigmoid激活函数。为了使基于极限学习机的彩色图像超分辨率算法具有更快的学习速度,更好的泛化能力,论文提出一种具有生物学激活模型且有一定稀疏表达能力的Soft plus激活函数与学习... 在极限学习机网络结构中,对于隐藏层节点,一般都采用Sigmoid激活函数。为了使基于极限学习机的彩色图像超分辨率算法具有更快的学习速度,更好的泛化能力,论文提出一种具有生物学激活模型且有一定稀疏表达能力的Soft plus激活函数与学习能力更好的HKELM相结合的彩色图像超分辨率算法。实验证明,与传统的极限学机相比,基于Soft plus+HKELM的彩色图像超分辨率算法不仅具有更好的泛化能力,而且最大程度降低了极限学习机训练的复杂度,提高了超分辨算法的实时应用性。 展开更多
关键词 极限学习机 softplus激活函数 图像超分辨率 质量评估
在线阅读 下载PDF
Softplus beta负二项整数值GARCH模型 被引量:1
6
作者 戚乐乐 朱复康 《数学学报(中文版)》 CSCD 北大核心 2023年第2期293-308,共16页
INGARCH模型常基于泊松和负二项等分布来构造.Beta负二项(BNB)分布是一种灵活的分布,相关BNB-INGARCH模型最近被提出,该模型的条件均值是线性的,参数限制为非负的,不能建模负相关.本文首先提出对数线性BNB-INGARCH模型解决上述问题,但... INGARCH模型常基于泊松和负二项等分布来构造.Beta负二项(BNB)分布是一种灵活的分布,相关BNB-INGARCH模型最近被提出,该模型的条件均值是线性的,参数限制为非负的,不能建模负相关.本文首先提出对数线性BNB-INGARCH模型解决上述问题,但此模型不再具有线性均值的简单形式和类似ARMA的相关结构,采用softplus函数进一步构造了softplus BNB-INGARCH(p,q)模型作为主要研究对象.当p=q=1时证明了模型的平稳遍历性,给出了二阶矩存在的条件,并通过数值模拟验证该模型可以被线性近似,给出模型极大似然估计的相合性和渐近正态性,最后经过实际数据分析说明了模型的优良性. 展开更多
关键词 BNB分布 INGARCH模型 极大似然估计 近似矩 softplus函数
原文传递
基于YOLOv8改进的脑癌检测算法
7
作者 王喆 赵慧俊 +2 位作者 谭超 李骏 申冲 《计算机科学》 CSCD 北大核心 2024年第S02期444-450,共7页
自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改... 自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改进措施。首先,采用了高效的多尺度注意力EMA(Efficient Multi-scale Attention),这种方法既可以对全局信息进行编码,也可以对信息进行重新校准,同时通过并行的分支输出特征进行跨维度的交互,使信息进一步聚合。其次,引入了BiFPN(Bidirectional Feature Pyramid Network)模块,并对其结构进行改进,以便缩短每一次检测所需要的时间,同时提升图像识别效果。然后采用MDPIoU损失函数和Mish激活函数进行改进,进一步提高检测的准确度。最后进行仿真实验,实验结果表明,改进的YOLOv8算法在脑癌检测中的精确率、召回率、平均精度均值均有提升,其中Precision提高了4.48%,Recall提高了2.64%,mAP@0.5提高了2.6%,mAP@0.5:0.9提高了7.0%。 展开更多
关键词 YOLOv8 脑癌 Efficient Multi-Scale Attention模块 Bidirectional Feature Pyramid Network结构 Missed softplus with Identity Shortcut激活函数 Minimum Point Distance Intersection over Union损失函数
在线阅读 下载PDF
一种新的深度卷积神经网络的SLU函数 被引量:4
8
作者 赵慧珍 刘付显 李龙跃 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第4期117-123,共7页
修正线性单元(rectified linear unit,ReLU)是深度卷积神经网络常用的激活函数,但当输入为负数时,ReLU的输出为零,造成了零梯度问题;且当输入为正数时,ReLU的输出保持输入不变,使得ReLU函数的平均值恒大于零,引起了偏移现象,从而限制了... 修正线性单元(rectified linear unit,ReLU)是深度卷积神经网络常用的激活函数,但当输入为负数时,ReLU的输出为零,造成了零梯度问题;且当输入为正数时,ReLU的输出保持输入不变,使得ReLU函数的平均值恒大于零,引起了偏移现象,从而限制了深度卷积神经网络的学习速率和学习效果.针对ReLU函数的零梯度问题和偏移现象,根据"输出均值接近零的激活函数能够提升神经网络学习性能"原理对其进行改进,提出SLU(softplus linear unit)函数.首先,对负数输入部分进行softplus处理,使得负数输入时SLU函数的输出为负,从而输出平均值更接近于零,减缓了偏移现象;其次,为保证梯度平稳,对SLU的参数进行约束,并固定正数部分的参数;最后,根据SLU对正数部分的处理调整负数部分的参数,确保激活函数在零点处连续可导,信息得以双向传播.设计深度自编码模型在数据集MINST上进行无监督学习,设计网中网卷积神经网络模型在数据集CIFAR-10上进行监督学习.实验结果表明,与ReLU及其相关改进单元相比,基于SLU函数的神经网络模型具有更好的特征学习能力和更高的学习精度. 展开更多
关键词 深度学习 卷积神经网络 激活函数 softplus函数 修正线性单元
在线阅读 下载PDF
基于CMP分布的整数值传递函数模型的贝叶斯干预分析
9
作者 赵浣宇 许诺 朱复康 《计量经济学报》 2025年第3期916-940,共25页
整数值广义自回归条件异方差(INGARCH)模型常以泊松分布作为条件分布,而泊松分布无法描述过离散.为了同时处理过离散和低离散数据,本文研究了基于均值参数化的Conway-Maxwell泊松(CMP)分布的INGARCH传递函数模型,即CMP-INGARCH (1,1)传... 整数值广义自回归条件异方差(INGARCH)模型常以泊松分布作为条件分布,而泊松分布无法描述过离散.为了同时处理过离散和低离散数据,本文研究了基于均值参数化的Conway-Maxwell泊松(CMP)分布的INGARCH传递函数模型,即CMP-INGARCH (1,1)传递函数模型,之后加入softplus函数作为连接函数,提出softplus CMP-INGARCH (1,1)传递函数模型,这避免了线性整流(ReLU)函数在零点不可微的缺点.本文采用自适应MCMC算法,对参数组进行MCMC迭代采样,对两个模型的四种干预类型进行数值模拟,所有结果均得到了有效检测.实例使用澳大利亚新南威尔士州Albury市1995年2月至2023年9月的犯罪数据进行干预分析,最终结果表明新模型具有优越性. 展开更多
关键词 CMP分布 INGARCH模型 传递函数 softplus函数 MCMC算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部