Machinery condition monitoring is beneficial to equipment maintenance and has been receiving much attention from academia and industry.Machine learning,especially deep learning,has become popular for machinery conditi...Machinery condition monitoring is beneficial to equipment maintenance and has been receiving much attention from academia and industry.Machine learning,especially deep learning,has become popular for machinery condition monitoring because that can fully use available data and computational power.Since significant accidents might be caused if wrong fault alarms are given for machine condition monitoring,interpretable machine learning models,integrate signal processing knowledge to enhance trustworthiness of models,are gradually becoming a research hotspot.A previous spectrum-based and interpretable optimized weights method has been proposed to indicate faulty and fundamental frequencies when the analyzed data only contains a healthy type and a fault type.Considering that multiclass fault types are naturally met in practice,this work aims to explore the interpretable optimized weights method for multiclass fault type scenarios.Therefore,a new multiclass optimized weights spectrum(OWS)is proposed and further studied theoretically and numerically.It is found that the multiclass OWS is capable of capturing the characteristic components associated with different conditions and clearly indicating specific fault characteristic frequencies(FCFs)corresponding to each fault condition.This work can provide new insights into spectrum-based fault classification models,and the new multiclass OWS also shows great potential for practical applications.展开更多
Recognition of human activity based on convolutional neural network(CNN)has received the interest of researchers in recent years due to its significant improvement in accuracy.A large number of algorithms based on the...Recognition of human activity based on convolutional neural network(CNN)has received the interest of researchers in recent years due to its significant improvement in accuracy.A large number of algorithms based on the deep learning approach have been proposed for activity recognition purpose.However,with the increasing advancements in technologies having limited computational resources,it needs to design an efficient deep learning-based approaches with improved utilization of computational resources.This paper presents a simple and efficient 2-dimensional CNN(2-D CNN)architecture with very small-size convolutional kernel for human activity recognition.The merit of the proposed CNN architecture over standard deep learning architectures is fewer trainable parameters and lesser memory requirement which enables it to train the proposed CNN architecture on low GPU memory-based devices and also works well with smaller as well as larger size datasets.The proposed approach consists of mainly four stages:namely(1)creation of dataset and data augmentation,(2)designing 2-D CNN architecture,(3)the proposed 2-D CNN architecture trained from scratch up to optimum stage,and(4)evaluation of the trained 2-D CNN architecture.To illustrate the effectiveness of the proposed architecture several extensive experiments are conducted on three publicly available datasets,namely IXMAS,YouTube,and UCF101 dataset.The results of the proposed method and its comparison with other state-of-the-art methods demonstrate the usefulness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.523B2043 and 52475112.
文摘Machinery condition monitoring is beneficial to equipment maintenance and has been receiving much attention from academia and industry.Machine learning,especially deep learning,has become popular for machinery condition monitoring because that can fully use available data and computational power.Since significant accidents might be caused if wrong fault alarms are given for machine condition monitoring,interpretable machine learning models,integrate signal processing knowledge to enhance trustworthiness of models,are gradually becoming a research hotspot.A previous spectrum-based and interpretable optimized weights method has been proposed to indicate faulty and fundamental frequencies when the analyzed data only contains a healthy type and a fault type.Considering that multiclass fault types are naturally met in practice,this work aims to explore the interpretable optimized weights method for multiclass fault type scenarios.Therefore,a new multiclass optimized weights spectrum(OWS)is proposed and further studied theoretically and numerically.It is found that the multiclass OWS is capable of capturing the characteristic components associated with different conditions and clearly indicating specific fault characteristic frequencies(FCFs)corresponding to each fault condition.This work can provide new insights into spectrum-based fault classification models,and the new multiclass OWS also shows great potential for practical applications.
文摘Recognition of human activity based on convolutional neural network(CNN)has received the interest of researchers in recent years due to its significant improvement in accuracy.A large number of algorithms based on the deep learning approach have been proposed for activity recognition purpose.However,with the increasing advancements in technologies having limited computational resources,it needs to design an efficient deep learning-based approaches with improved utilization of computational resources.This paper presents a simple and efficient 2-dimensional CNN(2-D CNN)architecture with very small-size convolutional kernel for human activity recognition.The merit of the proposed CNN architecture over standard deep learning architectures is fewer trainable parameters and lesser memory requirement which enables it to train the proposed CNN architecture on low GPU memory-based devices and also works well with smaller as well as larger size datasets.The proposed approach consists of mainly four stages:namely(1)creation of dataset and data augmentation,(2)designing 2-D CNN architecture,(3)the proposed 2-D CNN architecture trained from scratch up to optimum stage,and(4)evaluation of the trained 2-D CNN architecture.To illustrate the effectiveness of the proposed architecture several extensive experiments are conducted on three publicly available datasets,namely IXMAS,YouTube,and UCF101 dataset.The results of the proposed method and its comparison with other state-of-the-art methods demonstrate the usefulness of the proposed method.