期刊文献+
共找到341篇文章
< 1 2 18 >
每页显示 20 50 100
基于卷积神经网络和改进分层Softmax策略的设备健康状态评估方法
1
作者 徐红亮 张侯 +4 位作者 谢雨寒 杨振华 蔺兴元 刘禹泽 黎志毅 《北京化工大学学报(自然科学版)》 北大核心 2025年第4期117-125,共9页
针对传统工业设备健康状态评估中存在的特征提取复杂、细粒度分类精度低等问题,提出了一种基于卷积神经网络和改进分层Softmax策略的设备健康状态评估方法(hierarchical Softmax convolutional neural network,HSCNN)。利用卷积神经网... 针对传统工业设备健康状态评估中存在的特征提取复杂、细粒度分类精度低等问题,提出了一种基于卷积神经网络和改进分层Softmax策略的设备健康状态评估方法(hierarchical Softmax convolutional neural network,HSCNN)。利用卷积神经网络从设备健康状态数据中学习特征表示,挖掘设备状态的内在特征。同时通过引入分层Softmax策略进行设备健康状态的多级分类,将原本的细粒度分类任务转换为层次化的决策过程,并采用哈夫曼树解决传统分层Softmax策略可能导致的计算资源浪费和模型性能下降问题,实现了对设备状态的高效、准确评估。将所提方法应用在大型煤矿设备运行健康状态评估上,并与传统多层感知机、循环神经网络、卷积神经网络、分层Softmax卷积神经网络和长短期记忆网络对比,结果表明基于卷积神经网络和改进分层Softmax策略的设备健康状态评估方法相比于传统方法具有更高的准确性。 展开更多
关键词 卷积神经网络 分层softmax策略 健康状态评估 设备安全评估
在线阅读 下载PDF
基于区间值毕达哥拉斯Sugeno-Weber Softmax算子的WASPAS多属性决策方法
2
作者 万国柔 《应用数学进展》 2025年第7期174-188,共15页
针对属性值为区间值毕达哥拉斯模糊数且权重信息完全未知的决策问题,本文提出基于Sugeno-Weber Softmax算子的区间值毕达哥拉斯模糊多属性决策方法。首先,定义了基于Sugeno-Weber三角模的区间值毕达哥拉斯模糊数运算法则。其次,为考虑... 针对属性值为区间值毕达哥拉斯模糊数且权重信息完全未知的决策问题,本文提出基于Sugeno-Weber Softmax算子的区间值毕达哥拉斯模糊多属性决策方法。首先,定义了基于Sugeno-Weber三角模的区间值毕达哥拉斯模糊数运算法则。其次,为考虑属性间的优先关系,提出四种区间值毕达哥拉斯模糊Sugeno-Weber Softmax平均和几何集成算子并讨论所提算子的幂等性、有界性和单调性等性质。为确定属性的权重信息,提出基于区间值毕达哥拉斯模糊PSI (Preference Selection Index)方法确定属性的客观权重。进一步提出基于Sugeno-Weber Softmax算子的区间值毕达哥拉斯模糊WASPAS (Weighted Aggregated Sum Product Assessment)方法确定备选方案的排序。通过实际案例验证所提方法的有效性及合理性,并由比较分析和参数分析讨论所提方法的鲁棒性和优越性。 展开更多
关键词 多属性决策 区间值毕达哥拉斯模糊集 Sugeno-Weber softmax算子 WASPAS方法
在线阅读 下载PDF
一种高效的Softmax函数计算方法及硬件电路 被引量:3
3
作者 刘海莹 乔瑞秀 +2 位作者 陈刚 鲁华祥 申荣铉 《微电子学与计算机》 2024年第2期91-100,共10页
针对现有Softmax函数硬件实现中存在的面积消耗大、速度慢、计算效率低等问题,设计一种高效的Softmax函数计算方法及硬件电路。提出一种稀疏化最大值计算方式,仅选择有效的输入值进行计算和存储,并采用动态移位更新最大值的方式将最大... 针对现有Softmax函数硬件实现中存在的面积消耗大、速度慢、计算效率低等问题,设计一种高效的Softmax函数计算方法及硬件电路。提出一种稀疏化最大值计算方式,仅选择有效的输入值进行计算和存储,并采用动态移位更新最大值的方式将最大值求取隐藏在流水线中,提高计算效率;优化分段线性拟合算法,避免乘法器的使用,减少了硬件资源开销。基于现场可编程门阵列(Field-Programmable Gate Array,FPGA)的语音识别实验的结果表明,本方法减少了60%的指数存储需求,同时减少了50%的Softmax计算时间。在45 nm互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺下的逻辑综合实验表明,所实现的Softmax函数相较之前的工作,电路综合性能提升14%,面积减小51%。 展开更多
关键词 softmax函数 分段线性拟合 稀疏计算方式 深度神经网络
在线阅读 下载PDF
基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法 被引量:3
4
作者 杨胜楠 赵建敏 +1 位作者 杨梅 赵宇飞 《黑龙江畜牧兽医》 CAS 北大核心 2024年第4期36-42,共7页
为了实现精准畜牧业生产及畜牧业保险理赔中牛只身份的准确识别,试验提出了基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法,即采用深度卷积神经网络(deep convolutional neural networks,DCNNs)模型提取特征,利用去偏置项SoftMa... 为了实现精准畜牧业生产及畜牧业保险理赔中牛只身份的准确识别,试验提出了基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法,即采用深度卷积神经网络(deep convolutional neural networks,DCNNs)模型提取特征,利用去偏置项SoftMax损失函数优化特征空间中的特征分布,提高特征线性可分辨性,解决特征归一化后在投影超平面上的重叠问题;采用紧致度量损失函数结合去偏置项SoftMax损失函数联合监督模型训练,使同类特征与类内特征的平均距离最小化,提高特征聚类的紧凑性和可辨识性,同时兼顾了类内样本分布的多样性;最后试验将本算法(去偏置项SoftMax和紧致度量损失函数联合监督算法)与ArcFace损失函数、标准SoftMax损失函数、去偏置项SoftMax损失函数、标准SoftMax损失函数结合紧致度量损失函数进行了性能对分分析。结果表明:本算法的识别准确率在所有模型中最高,为97.61%;且能对高相似度牛脸正确识别。说明基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法可满足牧场牛只身份识别要求。 展开更多
关键词 深度度量学习 身份识别 牛脸识别 去偏置项softmax损失函数 紧致度量损失函数 深度卷积神经网络
原文传递
基于softmax的加权Double Q-Learning算法 被引量:4
5
作者 钟雨昂 袁伟伟 关东海 《计算机科学》 CSCD 北大核心 2024年第S01期46-50,共5页
强化学习作为机器学习的一个分支,用于描述和解决智能体在与环境的交互过程中,通过学习策略以达成回报最大化的问题。Q-Learning作为无模型强化学习的经典方法,存在过估计引起的最大化偏差问题,并且在环境中奖励存在噪声时表现不佳。Dou... 强化学习作为机器学习的一个分支,用于描述和解决智能体在与环境的交互过程中,通过学习策略以达成回报最大化的问题。Q-Learning作为无模型强化学习的经典方法,存在过估计引起的最大化偏差问题,并且在环境中奖励存在噪声时表现不佳。Double Q-Learning(DQL)的出现解决了过估计问题,但同时造成了低估问题。为解决以上算法的高低估问题,提出了基于softmax的加权Q-Learning算法,并将其与DQL相结合,提出了一种新的基于softmax的加权Double Q-Learning算法(WDQL-Softmax)。该算法基于加权双估计器的构造,对样本期望值进行softmax操作得到权重,使用权重估计动作价值,有效平衡对动作价值的高估和低估问题,使估计值更加接近理论值。实验结果表明,在离散动作空间中,相比于Q-Learning算法、DQL算法和WDQL算法,WDQL-Softmax算法的收敛速度更快且估计值与理论值的误差更小。 展开更多
关键词 强化学习 Q-LEARNING Double Q-Learning softmax
在线阅读 下载PDF
基于Softmax回归分类模型的网页搜索排序算法 被引量:2
6
作者 党米花 《吉林大学学报(信息科学版)》 CAS 2024年第5期985-990,共6页
针对网页搜索结果存在返回的网页与搜索的关键词领域不相关的领域漂移现象,导致用户无法搜索到需求信息的问题,提出基于Softmax回归分类模型的网页搜索排序算法。选择网页搜索文本特征,得到相应的特征项,利用向量表示模型,将选择的网页... 针对网页搜索结果存在返回的网页与搜索的关键词领域不相关的领域漂移现象,导致用户无法搜索到需求信息的问题,提出基于Softmax回归分类模型的网页搜索排序算法。选择网页搜索文本特征,得到相应的特征项,利用向量表示模型,将选择的网页搜索文本特征项转换为格式化数据,对网页搜索文本数据进行均衡处理,获取网页搜索文本数据集。采用Softmax回归分类模型,分类处理网页搜索文本数据集,预测网页搜索文本类别,通过Okapi BM25算法,对网页搜索文本进行排序操作,实现网页搜索排序。实验结果表明,所提算法具有较好的网页搜索排序,提升了网页搜索排序精度,避免网页搜索排序过程中的领域漂移现象。 展开更多
关键词 softmax回归分类模型 网页搜索排序 文本预处理 TF-IDF算法 Okapi BM25算法
在线阅读 下载PDF
基于Softmax回归在复杂地形条件下的降水相态预报模型——以山西省晋中市为例
7
作者 余丽萍 郭彩萍 +3 位作者 周雅清 胡桃花 杨青 马丽 《中南农业科技》 2024年第2期111-116,共6页
利用2000—2018年山西省晋中市常规地面观测资料对当地降水相态时空分布特征进行统计分析,用ERA5再分析资料在显著性检验基础上筛选出与降水相态相关性较强的物理量参数,以筛选出的物理量作为特征数据,采用k-聚类法对晋中市进行区域划分... 利用2000—2018年山西省晋中市常规地面观测资料对当地降水相态时空分布特征进行统计分析,用ERA5再分析资料在显著性检验基础上筛选出与降水相态相关性较强的物理量参数,以筛选出的物理量作为特征数据,采用k-聚类法对晋中市进行区域划分,基于Softmax回归方法分别建立不同区域的降水相态分类预报模型。结果表明,晋中市发生雨雪转换日最多的是3月,其次为11月,4月、11月更容易发生液态降水向固态降水的转换;筛选出与降水相态相关性较强的3个物理量参数分别是T_(850hPa)、T_(0)和H_(700~850hPa),相变日数有明显的地域差异;第二区域和第三区域的模型预测精度均高于不进行区域划分的模型精度,说明进行区域划分再建模可在一定程度上提高模型的预报准确率。 展开更多
关键词 降水相态预报 softmax回归模型 k-聚类 区域划分 山西省晋中市
在线阅读 下载PDF
基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法 被引量:32
8
作者 梁敏健 崔啸宇 +1 位作者 宋青松 赵祥模 《交通运输工程学报》 EI CSCD 北大核心 2017年第3期151-158,共8页
为了提高交通标志识别的正确率和实时性,提出了一种基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法。采用Gamma矫正方法提取HOG特征,采用对比度受限的自适应直方图均衡化方法提取Gabor特征,基于线性特征融合原理,将提取的HOG... 为了提高交通标志识别的正确率和实时性,提出了一种基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法。采用Gamma矫正方法提取HOG特征,采用对比度受限的自适应直方图均衡化方法提取Gabor特征,基于线性特征融合原理,将提取的HOG和Gabor特征向量直接串联,得到刻画交通标志的融合特征向量,采用Softmax分类器对融合特征向量进行分类,采用德国交通标志识别基准(GTSRB)数据库测试了所提方法的有效性,比较了基于单特征与融合特征的交通标志识别效果。试验结果表明:在图像增强过程中,针对HOG特征,采用Gamma矫正方法的分类正确率最大,为97.11%,针对Gabor特征,采用限制对比度的直方图均衡化方法的分类正确率最大,为97.54%;采用Softmax分类器的最小分类正确率为97.11%,耗时小于2s;针对HOG-Gabor融合特征,采Softmax分类器的识别率高达97.68%,因此,基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法的识别率高,实时性强。 展开更多
关键词 交通信息工程 智能车 交通标志识别 特征提取 softmax分类 特征融合
原文传递
基于Softmax分类器的小春作物种植空间信息提取 被引量:11
9
作者 蒋怡 黄平 +4 位作者 董秀春 李宗南 王昕 魏来 邱金春 《西南农业学报》 CSCD 北大核心 2019年第8期1880-1885,F0003,共7页
[目的]使用浅层机器学习分类方法和多光谱遥感影像快速准确提取研究区小春作物(油菜、小麦)种植空间信息。[方法]选择研究区小春作物识别最佳时期的Sentinel 2A MSI多光谱影像,融合得到10 m分辨率影像,然后降尺度生成15、20、30 m分辨... [目的]使用浅层机器学习分类方法和多光谱遥感影像快速准确提取研究区小春作物(油菜、小麦)种植空间信息。[方法]选择研究区小春作物识别最佳时期的Sentinel 2A MSI多光谱影像,融合得到10 m分辨率影像,然后降尺度生成15、20、30 m分辨率影像,结合地面调查数据,建立油菜、小麦、林地、居民地、水体等典型地物感兴趣区,训练Softmax分类器,基于不同空间分辨率影像提取油菜、小麦种植空间信息。[结果]①基于Softmax分类器和10 m分辨率融合影像的小春作物分类总体精度为90.02%,Kappa系数为0.8344,其中油菜生产者精度和用户精度分别为93.14%、91.42%,小麦的分别为87.93%,98.09%;②Softmax法的小春作物分类精度随影像空间分辨率下降而降低,15、20、30 m分辨率影像的分类精度较10 m的分别下降9.80%、12.04%和13.04%,Kappa系数依次减少0.1538,0.1873和0.2088;③15、20、30 m分辨率影像的油菜分类精度较小麦的低,影响因素为油菜花期和种植地块破碎分散。[结论]Softmax分类器在10~30 m中高分辨率影像小春作物分类中具备较高的精度,可作为常规方法应用于业务化的作物监测工作。 展开更多
关键词 小春作物 softmax 机器学习 空间分辨率 分类精度
在线阅读 下载PDF
基于主成分分析和Softmax回归模型的人脸识别方法 被引量:29
10
作者 汪海波 陈雁翔 李艳秋 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期759-763,共5页
文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网... 文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网络,将它与Softmax回归模型构成的级联结构看作是2层神经网络,在神经网络的训练过程中,主成分的特征向量可以微调。在不同人脸数据库上的实验表明,相比于传统的只用PCA降维的方法,本文方法可达到较高的识别率。 展开更多
关键词 人脸识别 主成分分析 softmax回归模型 神经网络
在线阅读 下载PDF
基于softmax回归与图割法的脑肿瘤分割算法 被引量:15
11
作者 葛婷 牟宁 李黎 《电子学报》 EI CAS CSCD 北大核心 2017年第3期644-649,共6页
从医学图像中分割脑肿瘤区域可以为脑肿瘤的诊断以及放射治疗提供帮助.但肿瘤区域的变化异常且边界非常模糊,因此自动或半自动地分割脑肿瘤非常困难.针对这一问题,本文结合softmax回归和图割法提出一种脑肿瘤分割算法.首先融合多序列核... 从医学图像中分割脑肿瘤区域可以为脑肿瘤的诊断以及放射治疗提供帮助.但肿瘤区域的变化异常且边界非常模糊,因此自动或半自动地分割脑肿瘤非常困难.针对这一问题,本文结合softmax回归和图割法提出一种脑肿瘤分割算法.首先融合多序列核磁共振图像(MRI)并标记训练样本,再用softmax回归训练模型参数并计算每个点属于各个类别的概率,最后将概率融入到图割法中,用最小切/最大流方法得到最终分割结果.实验表明提出的方法可以更好地得到脑肿瘤的边界,并能较准确地分割出脑肿瘤区域. 展开更多
关键词 医学图像 脑肿瘤 核磁共振图像 图像分割 softmax回归 图割法 最小切/最大流
在线阅读 下载PDF
稀疏自编码和Softmax回归的快速高效特征学习 被引量:18
12
作者 徐德荣 陈秀宏 田进 《传感器与微系统》 CSCD 2017年第5期55-58,共4页
针对特征学习效果与时间平衡问题,提出了一种快速高效的特征学习方法。将稀疏自编码和Softmax回归组合成一个新的特征提取模型,在提取原始图像潜在信息的基础上,利用多分类器返回值可以反映输入信息的相似程度的特点,快速高效的学习利... 针对特征学习效果与时间平衡问题,提出了一种快速高效的特征学习方法。将稀疏自编码和Softmax回归组合成一个新的特征提取模型,在提取原始图像潜在信息的基础上,利用多分类器返回值可以反映输入信息的相似程度的特点,快速高效的学习利于分类的特征向量。鉴于标签信息已知,该算法在图像分类效果上明显优于几种典型的特征学习方法。为了使所提算法具有更好的泛化能力,回归模型的损失函数中加入了L2范数防止过拟合,同时,采用随机梯度下降的方法得到模型的最优参数。在4个标准数据集上的测试结果表明该算法是有效可行的。 展开更多
关键词 稀疏自编码 softmax回归 特征学习 图像分类 随机梯度下降
在线阅读 下载PDF
中心损失与Softmax损失联合监督下的人脸识别 被引量:13
13
作者 余成波 田桐 +1 位作者 熊递恩 许琳英 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第5期92-100,共9页
深度学习在人脸识别领域已经取得了巨大的成就,针对当前大多数卷积神经网络采用Softmax损失函数进行特征分类,增加新的类别样本会减小类间距离的增长趋势,影响网络对特征判别的问题,采用了一种基于中心损失与Softmax损失联合监督的人脸... 深度学习在人脸识别领域已经取得了巨大的成就,针对当前大多数卷积神经网络采用Softmax损失函数进行特征分类,增加新的类别样本会减小类间距离的增长趋势,影响网络对特征判别的问题,采用了一种基于中心损失与Softmax损失联合监督的人脸识别算法,来提高网络对特征的识别能力。在Softmax基础上,首先,分别对训练集每个类别在特征空间维护一个类中心,训练过程新增加样本时,网络会约束样本的分类中心距离,从而兼顾了类内聚合与类间分离。其次,引入动量概念,在分类中心更新的时候,通过保留之前的更新方向,同时利用当前批次的梯度微调最终的更新方向,该方法可以在一定程度上增加稳定性,提高网络的学习效率。最后,在人脸识别基准库LFW上的测试实验证明:所提的联合监督算法,在较小的网络训练集上,获得了99.31%的人脸识别精度。 展开更多
关键词 深度学习 中心损失 softmax损失 动量 人脸识别
原文传递
利用红外特征和Softmax回归识别绝缘子污秽等级 被引量:11
14
作者 付鹏 姚建刚 龚磊 《计算机工程与应用》 CSCD 北大核心 2015年第13期181-185,共5页
提出了一种红外图像特征与Softmax回归相结合的方法识别绝缘子污秽等级。通过对红外图像的灰度化、图像滤波、二值化、盘面分割、半盘面提取等预处理过程,获取单个绝缘子半盘面区域。设计了以环境温度、绝缘子背景图像的平均灰度、绝缘... 提出了一种红外图像特征与Softmax回归相结合的方法识别绝缘子污秽等级。通过对红外图像的灰度化、图像滤波、二值化、盘面分割、半盘面提取等预处理过程,获取单个绝缘子半盘面区域。设计了以环境温度、绝缘子背景图像的平均灰度、绝缘子盘面区域的平均灰度、绝缘子盘面灰度分布的方差值、灰度熵和环境湿度共6个反映污秽等级的特征集的基于Softmax回归多值分类模型识别绝缘子污秽等级。引入概率阈值从问题源头出发,解决了拍摄时所产生的无效绝缘子红外图像对污秽等级分类的影响。实验结果表明所选取的特征集和绝缘子污秽识别模型高效且可行。 展开更多
关键词 绝缘子 红外热像 多元分类 softmax回归 概率阈值
在线阅读 下载PDF
基于神经网络语言模型的动态层序Softmax训练算法 被引量:4
15
作者 杨鹤标 胡惊涛 刘芳 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2020年第1期67-72,80,共7页
针对词向量训练过程中层序Softmax算法无法进行增量训练及海量数据训练低效的问题,提出了动态层序Softmax算法.通过对数据样本的增量加载,采用结点置换方法动态构建编码树,实现对样本的增量训练.为避免损失函数因样本量较少而呈现震荡... 针对词向量训练过程中层序Softmax算法无法进行增量训练及海量数据训练低效的问题,提出了动态层序Softmax算法.通过对数据样本的增量加载,采用结点置换方法动态构建编码树,实现对样本的增量训练.为避免损失函数因样本量较少而呈现震荡式下降,利用梯度的一阶矩估计与二阶矩估计动态调整参数更新方向与学习率,通过梯度迭代缩小权值变化范围和收敛训练误差,提高词向量的训练效率.以维基百科中文语料作为数据进行了试验,完成了训练效率和质量的分析.结果表明:相较于现有方法动态层序Softmax算法显著提高了训练效率,当增量样本大小为10 kB^1 MB时,训练增速有近30倍的提升,有效地缩短训练周期. 展开更多
关键词 词向量 层序softmax 增量训练 矩估计 梯度迭代
在线阅读 下载PDF
基于知识图谱和Softmax回归的干扰信号识别方法 被引量:11
16
作者 陈宣 李怡昊 陈金立 《中国电子科学研究院学报》 北大核心 2021年第9期856-861,共6页
随着信息技术的发展,未来移动通信系统将是地海空一体化的综合性网络,因此通信系统所面临的干扰情况将异常复杂,这将导致干扰信号的识别与抑制任务更具有挑战性。针对此问题,文中提出一种基于知识图谱和Softmax回归的干扰信号识别方法... 随着信息技术的发展,未来移动通信系统将是地海空一体化的综合性网络,因此通信系统所面临的干扰情况将异常复杂,这将导致干扰信号的识别与抑制任务更具有挑战性。针对此问题,文中提出一种基于知识图谱和Softmax回归的干扰信号识别方法。该方法首先构建干扰信号识别的专家知识图谱并利用TransR算法将其嵌入到低维向量空间中;然后,提取出每个干扰信号的多维特征并做归一化处理,将这些归一化特征值作为Softmax回归模型的输入,从而提高Softmax回归算法对干扰信号识别的准确率。仿真结果表明,对于典型的干扰样式,文中方法比基于Softmax回归和基于BP神经网络的干扰信号识别方法具有更好的识别性能。 展开更多
关键词 干扰信号识别 知识图谱 softmax回归 TransR算法
在线阅读 下载PDF
RHS-CNN:一种基于正则化层次Softmax的CNN文本分类模型 被引量:17
17
作者 王勇 何养明 +1 位作者 陈荟西 黎春 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第5期187-195,共9页
传统的卷积神经网络分类模型(CNN)的输出层采用扁平式架构的标准Softmax,在数据量较大、类别较多的文本分类任务中计算复杂度高,训练耗时长;而基于霍夫曼树(Huffman tree)构建的改进算法--层次Softmax(hierarchical softmax,H-Softmax)... 传统的卷积神经网络分类模型(CNN)的输出层采用扁平式架构的标准Softmax,在数据量较大、类别较多的文本分类任务中计算复杂度高,训练耗时长;而基于霍夫曼树(Huffman tree)构建的改进算法--层次Softmax(hierarchical softmax,H-Softmax)能极大地提高训练速度,但由于加入了大量的节点参数,使得优化难度增加,优化需要更长的迭代步,且容易过拟合,继而影响模型的拟合速度和分类效果。为此,提出了改进算法模型RHS-CNN(regularization hierarchical softmax CNN),采用正则化的方法,对H-Softmax的节点参数进行约束,避免过拟合,增强模型的泛化能力。实验分析结果表明:所提出的方法在相应评价指标上相对Softmax、H-Softmax有着一定的提升。 展开更多
关键词 文本分类 正则化 H-softmax RHS-CNN
在线阅读 下载PDF
基于Softmax回归分类分析的人体运动检测研究 被引量:1
18
作者 孙小华 《价值工程》 2019年第26期239-240,共2页
提出一种基于分类分析的人体运动状态识别方法。通过手机内置的加速度传感器采集相关数据,然后对采集的数据进行预处理,采用Softmax回归分类算法对人体运动状态进行分类。在深度学习框架TensorFlow下的实验结果显示此算法分类精度较高,... 提出一种基于分类分析的人体运动状态识别方法。通过手机内置的加速度传感器采集相关数据,然后对采集的数据进行预处理,采用Softmax回归分类算法对人体运动状态进行分类。在深度学习框架TensorFlow下的实验结果显示此算法分类精度较高,对静止、走路、慢跑、上下楼梯、骑车等五种运动状态的综合识别率为88.18%。 展开更多
关键词 人体行为识别 softmax回归分类 加速度传感器
在线阅读 下载PDF
融合softmax的偏最小二乘法及中药数据分析研究 被引量:9
19
作者 李欢 聂斌 +3 位作者 杜建强 余日跃 周丽 黄强 《计算机应用研究》 CSCD 北大核心 2019年第12期3740-3743,共4页
偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)是一种线性分类方法,不能充分表达数据之间的非线性关系,难以适应非线性数据的分类识别。针对该问题,结合softmax回归能够表达非线性特征,提出融合softmax回归... 偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)是一种线性分类方法,不能充分表达数据之间的非线性关系,难以适应非线性数据的分类识别。针对该问题,结合softmax回归能够表达非线性特征,提出融合softmax回归的偏最小二乘判别分析算法(PLS-S-DA)。为了验证PLS-S-DA对非线性数据的有效性,以准确率、运行时间、查准率、查全率和F1-score为评价指标,采用四组UCI数据集和中药寒热药性数据集测试PLS-S-DA的性能,并与PLS-DA等五种分类算法对比。结果表明,对具有非线性特征的数据,PLS-S-DA相比于其他算法有更高的准确率,并对寒药和热药有更强的识别能力。 展开更多
关键词 偏最小二乘法 softmax回归 非线性 中医药信息学
在线阅读 下载PDF
基于核主成分分析-SoftMax的高压断路器机械故障诊断技术研究 被引量:50
20
作者 王昱皓 武建文 +2 位作者 马速良 杨景刚 赵科 《电工技术学报》 EI CSCD 北大核心 2020年第S01期267-276,共10页
高压断路器是保证电力系统安全、可靠运行的重要设备,对于高压断路器机械故障定位和诊断成为近年来重要的研究课题。本文针对高压断路器典型工况的振动信号,提出了一种基于核主成分分析(KPCA)的SoftMax故障诊断模型。首先,通过小波包分... 高压断路器是保证电力系统安全、可靠运行的重要设备,对于高压断路器机械故障定位和诊断成为近年来重要的研究课题。本文针对高压断路器典型工况的振动信号,提出了一种基于核主成分分析(KPCA)的SoftMax故障诊断模型。首先,通过小波包分解计算振动信息的时频能量比,定义高压断路器六种典型机械工况下的特征描述。然后,利用KPCA对原始特征空间进行压缩,重构低维、高识别度的特征空间,采用SoftMax分类算法对高压断路器典型工况进行诊断定位。最后,对比原始特征空间下、主成分分析特征空间下和KPCA特征空间下的SoftMax分类结果以及KPCA特征下多种典型分类诊断算法,诊断结果表明结合KPCA特征空间重构的SoftMax诊断模型的优越性,为高压断路器机械故障诊断与定位提供新思路。 展开更多
关键词 高压断路器 故障诊断 振动信号 核主成分分析 softmax
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部