Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomer...Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.展开更多
Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of C...Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of Cu-BTC, a copper-based MOF, and its derivatives Cu TM-BTC via the substitution of transition metal(TM) elements at the Cu site for photocatalytic overall water splitting(POWS) have been studied. POWS of Cu-BTC suffers from the sluggish hydrogen evolution reaction due to the large overpotential of 2.02 V and limited solar utilization due to a wide HOMO-LUMO gap of 4.11 e V. Via TM substitution, the HOMO-LUMO gap narrows but still satisfies the redox potentials when taken 3d-TM of Cr, Fe, Co or Ni, 4d-TM of Rh or Pd, or 5d-TM of Re or Pt into consideration, benefiting for the light absorption. Furthermore, Cr and Re could serve as active sites for hydrogen evolution with remarkably lowered overpotentials of 0.79 V and 0.28 V, respectively;similarly, oxygen evolution activities could be enhanced by Fe, Co and Rh because of their reduced overpotentials which are less than 0.5 V. Therefore,our findings pave guidance for designing Cu-BTC derivatives in overall water splitting.展开更多
This study aims to construct a virtual twin testing framework for the safety of the intended functionality of intelligent connected vehicles to address the safety requirements of intelligent driving and transportation...This study aims to construct a virtual twin testing framework for the safety of the intended functionality of intelligent connected vehicles to address the safety requirements of intelligent driving and transportation systems.The research methods include the construction of a theoretical model of safety for intelligent connected vehicles based on the concept of virtual twins,the correlation study between key concepts and functional safety,and the application research of virtual twin technology in the safety testing of intelligent connected vehicles.The results reveal that the virtual twin testing framework can effectively enhance the functional safety of intelligent connected vehicles,reduce development costs,and shorten the product launch cycle.The conclusion suggests that this framework provides strong support for the healthy development of the intelligent connected vehicle industry and has a positive impact on the safety and efficiency of intelligent transportation systems.展开更多
Lithium sulfur batteries(LSBs)show great promise as next-generation batteries due to their high energy density.However,commercialization is hindered by limited cycle life,fast capacity decay and poor sulfur utilizatio...Lithium sulfur batteries(LSBs)show great promise as next-generation batteries due to their high energy density.However,commercialization is hindered by limited cycle life,fast capacity decay and poor sulfur utilization,primarily due to the intricate phase evolution during battery operation and insulating characteristics of sulfur,leading to uncontrollable sulfur and polysulfide distribution and inefficient conversion kinetics.Therefore,the incorporation of metal and covalent organic frameworks(MOFs and COFs)has been widely employed in LSBs to serve as hosts,enabling the regulation of conversion and diffusion behavior of vip species,including lithium ions,sulfur and polysulfides,within their well-defined nanosized cavities.Nevertheless,pristine frameworks often fail to meet the requisite standards,and framework functionalization offers unique opportunities to tailor desired attributes and facilitate selective host-vip interactions in LSBs.However,a thorough understanding on how to precisely customize the nano-channels with functional groups to promote such interactions remains largely unexplored.In this review,we provide a systematic discussion on how the grafting of functional groups containing various active sites can play a role in host-vip chemistry,and focus on the latest advancements in engineering functionalized MOFs and COFs as charged-species regulators to tackle the problems causing poor LSB electrochemical performance.The concepts of electrophilic and nucleophilic effects are proposed,uncovering the mechanisms of framework functionalization in LSBs and serving as guidance for future developments.展开更多
Lithium-selenium batteries,as an advanced rechargeable battery system,have attracted wide attention.However,its application is hurdled by the ambiguous underlying mechanism such as the unclear active phase and the key...Lithium-selenium batteries,as an advanced rechargeable battery system,have attracted wide attention.However,its application is hurdled by the ambiguous underlying mechanism such as the unclear active phase and the key role of the host materials.Herein,a three-dimensional(3D) functional matrix derived from the Co/Znmetal organic framework is synthesized to unravel the questions raised.It reveals that the strong interaction and voids in the 3D matrix serve to anchor the amorphous Se with high electrochemical properties.The obtained 3DC/Se exhibits 544.2 and 273.2 mAh·g^(-1) t current densities of 0.1C and 2.0C,respectively,with a diffusion-controlled mechanism.The excessive amount of Se beyond the loading capacity of the matrix leads to the formation of trigonal phase Se,which shows an unsatisfying electrochemical property.展开更多
The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets...The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets and their synergistic effects have been studied recently for possessing the advantages of functional species as well as crystalline framework nanosheets.Hence,we have focused on the preparation methods and applications of functional crystalline framework nanosheets in this review.We introduced crystalline framework nanosheets and discussed the importance of integrating functional species with nanosheets to form functional crystalline framework nanosheets.Then,two aspects of the preparation methods of functional crystalline framework nanosheets were reviewed:in situ synthesis and post-synthesis modification.Subsequently,we discussed the properties of the crystalline framework nanosheets combined with various functional species and summarized their applications in catalysis,sensing,separation,and energy storage.Finally,we have shared our insights on the challenges of functional crystalline framework nanosheets,hoping to contribute to the knowledge base for optimizing the preparation methods,expanding categories,improving stability,and exploring potential applications.展开更多
Covalent organic frameworks(COFs)have lately emerged as a blooming class of potential materials for photocatalytic water splitting because of their high crystallinity,huge surface areas,and structural versatility.Howe...Covalent organic frameworks(COFs)have lately emerged as a blooming class of potential materials for photocatalytic water splitting because of their high crystallinity,huge surface areas,and structural versatility.However,the photocatalytic performance for most pure COFs face some limitations factors,such as the significant recombination of photogenerated carriers and slow charge transfer.Herein,a novel thioether-functionalized pyrene-based COF(S_(4)-COF)was effectively produced and chosen as a support for the immobilization of ultrafine gold nanoparticles(Au NPs).S_(4)-COF photocatalyst with Au as cocatalyst demonstrates remarkable photocatalytic activity with a H_(2) generation rate of 1377μmol g^(−1) h^(−1) under visible light(>420 nm),which is ca.4.5-fold increase comparing to that of pure S_(4)-COF(302μmol g^(−1) h^(−1)).Au NPs anchored on S_(4)-COF possess an ultrafine size distribution ranging from 1.75 to 6.25 nm with an average size centered at 3.8 nm,which benefits from the coordination interaction between thioether groups and Au.Meanwhile,the produced Au@S_(4)-COF can generate a stable photocatalytic H_(2) generation during the four recycles and preserve its crystallinity structure after the stability testing.The Au NPs anchored on the S_(4)-COF photocatalyst can greatly accelerate the separation of photogenerated carriers and increase charge transfer because of the combined function of Au NPs and thioether groups.Such a method can not only prevent the aggregation of Au NPs onto thioether-containing COFs to achieve long-term photostability but also allow uniform dispersion for an ordered structure of photocatalysts.This work provides a rational strategy for designing and preparing COF-based photocatalysts for solar-driven H_(2) production.展开更多
The investigation of charge carrier kinetics has long been a cornerstone of polymer photocatalysis research.However,the role of proton transport behavior in photocatalytic processes has often been underappreciated,des...The investigation of charge carrier kinetics has long been a cornerstone of polymer photocatalysis research.However,the role of proton transport behavior in photocatalytic processes has often been underappreciated,despite its fundamental importance in proton-coupled electron-transfer reactions.Addressing this gap,we present a novel BF_(2)-bridged covalent organic framework(C2-COF-BF2) that undergoes post-synthetic modification with boron trifluoride,designed to confer a dual functional advantage.Specifically,the incorporated BF_(2) moieties are engineered to induce a donor-acceptor effect and potentially serve as continuous supply sites for activated protons.This bifunctional role not only enhances charge separation and migration while suppressing electron-hole recombination but also facilitates proton transport,thereby enabling improved performance in both photocatalytic hydrogen evolution reaction(HER) and H_(2) O_(2) production.Remarkably,the photocatalytic HER performance of C2-COF-BF2(AQY_(450 nm)= 8.78%) ranks among the highest efficiencies reported for COF-based photocatalysts to date.These findings highlight an innovative pathway for advancing the rational design of COF photocatalysts,offering a synergistic optimization of charge carrier kinetics and mass transfer processes to achieve unprecedented photocatalytic efficiency.展开更多
Multivariate metal-organic frameworks(MTV-MOFs) with different ratios of terephthalate(BDC) linker and amino-benzenedicarboxylate(BDC-NH2) linker were synthesized through both direct synthesis from linker mixtur...Multivariate metal-organic frameworks(MTV-MOFs) with different ratios of terephthalate(BDC) linker and amino-benzenedicarboxylate(BDC-NH2) linker were synthesized through both direct synthesis from linker mixture and linker exchange of activated single-linker MOFs. Functionality proportion was impacted by the thermodynamics during the one-pot MOF construction, resulting in preference of BDC over BDC-NH2 in the MTV-MOF, in agreement with the quantum mechanics calculations. The functionality difference also affects the thermodynamics in the linker exchange process, as indicated by the more effective linker exchange in BDC-NH2-based IRMOF-3 than in BDC-based MOF-5. Furthermore,the thermal decomposition temperatures and chemical integrity upon ambient air exposure of these MOFs with variate functionalities were investigated, and it reveals that higher proportion of BDC in the MTV-MOF crystals contribute to both higher thermal and higher chemical stabilities.展开更多
The development of C-H functionalization methods for directly converting C-H bonds into C-C bonds has drawn significant attention.These reactions typically require the concurrent involvement of distinct catalytic proc...The development of C-H functionalization methods for directly converting C-H bonds into C-C bonds has drawn significant attention.These reactions typically require the concurrent involvement of distinct catalytic processes,such as photoredox and transition metal catalysis.Combining the corresponding catalytic sites within a single catalyst,instead of adding extra cocatalysts,remains a significant challenge.Here,we present a novel pyridone-based hydrogen-bonded organic framework(HOF),named PFC-943,which exhibits exceptional visible-light absorption properties while integrating both photosensitizing and redox-active sites within its skeleton.Femtosecond transient absorption spectroscopy(fs-TA)reveals that the excited-state electrons of PFC-943 in ethanol exhibit an extended lifetime.Leveraging this unique excited-state electron behavior,PFC-943converts oxygen into highly reactive singlet oxygen(^(1)O_(2))via an energy transfer(En T)pathway and facilitates a key carbanion intermediate through a single electron transfer(SET)process.Consequently,the metal-free PFC-943 exhibits remarkable photocatalytic performance in C-H bond arylation reaction of quinoxalin-2(1H)-one.This work presents the first dual-functional HOF for radical-mediated C-H functionalization reactions,offering a novel approach to C-H bond functionalization.展开更多
The investigation of thermal transport properties of materials has become increasingly important in technological applications,including thermal management and energy conversion.Recently,ultrahigh or low thermal condu...The investigation of thermal transport properties of materials has become increasingly important in technological applications,including thermal management and energy conversion.Recently,ultrahigh or low thermal conductivity has been reported in nitride,boride,and chalcogenide by different strategies.However,the strategy to design oxide crystals with unique thermal properties is also a challenge.In this work,a new ternary oxide crystal Ga_(2)TeO_(6) is designed and expected to show high thermal conductivity due to its lone pairs-free octahedra connected along the caxis by sharing edges.The thermal conductivities of Ga_(2)TeO_(6) crystal are determined to be 19.2 and 23.9Wm^(-1) K^(-1) along the a-and c-axis directions at 323 K,respectively,which are significantly higher than those of most reported oxide crystals.First-principles calculations and crystal structure analyses reveal that the Ga_(2)TeO_(6) crystal shows high sound velocity and weak lattice anharmonicity due to lone pairs-free octahedra and highly symmetric group arrangement.The results suggest that much attention must be paid to the polyhedron with lone pairs and its arrangement in materials design to balance the functions and thermal properties.展开更多
Helicobacter pylori colonizes over 50%of people worldwide.Biofilm formation through penetrating gastric mucus and resistance acquired by H.pylori markedly reduces the efficacy of traditional antibiotics.The present tr...Helicobacter pylori colonizes over 50%of people worldwide.Biofilm formation through penetrating gastric mucus and resistance acquired by H.pylori markedly reduces the efficacy of traditional antibiotics.The present triple therapy and bismuth-based quadruple therapy inevitably causes intestinal flora disturbance and fails to address the excessive H.pylori-triggered inflammatory response.Herein,a mucus-permeable therapeutic platform(Cu-MOF@NF)that consists of copper-bearing metal-organic framework(Cu-MOF)loaded with nitrogen-doped carbon dots and naturally active polysaccharide fucoidan is developed.The experimental results demonstrate that Cu-MOF@NF can penetrate the mucus layer and hinder H.pylori from adhering on gastric epithelial cells of the stomach.Notably,released Cu2+can degrade the polysaccharides in the biofilm and interfere with the cyclic growing mode of"bacterioplankton↔biofilm",thereby preventing recurrent and persistent infection.Compared with traditional triple therapy,the Cu-MOF@NF not only possesses impressive antibacterial effect(even include multidrug-resistant strains),but also improves the inflammatory microenvironment without disrupting the balance of intestinal flora,providing a more efficient,safe,and antibiotic-free new approach to eradicating H.pylori.展开更多
Achieving efficient adsorption and separation of C_(2)H_(2)/CO_(2)mixtures is a goal that people have always pursued to improve the situation of high energy consumption brought by traditional separation technologies i...Achieving efficient adsorption and separation of C_(2)H_(2)/CO_(2)mixtures is a goal that people have always pursued to improve the situation of high energy consumption brought by traditional separation technologies in industry today.High-nuclearity metal cluster-based MOFs with different functionalities are promising for this separation,but it is a complicated and difficult task to precisely control their structures.The strategy of pore-space partition(PSP)is a powerful way to construct this type MOFs,which has the characteristic of isostructural relationship,and can be resulted in a similar performance for them.Therefore,it is an interesting work to explore the effect of MOFs property by adjusting the size of PSP dividers.Herein,three tetranuclear Cu(Ⅱ)cluster-based MOFs(FJU-112/113/114)with dual functionalities has been successfully obtained by PSP strategy with various lengths of divider units.With the highest microporosity and unique functional site,FJU-114 realized a good improvement in the adsorption and separation performance of C_(2)H_(2)/CO_(2).The gas adsorption and lab-scale C_(2)H_(2)/CO_(2)breakthrough experiments demonstrated that FJU-114 exhibits the highest adsorption uptake of 77 cm^(3)/g for C_(2)H_(2),and shows the best separation factor of 4.2 among three MOFs.The GCMC simulation reveals that a stronger adsorption binding site of C_(2)H_(2)in FJU-114a located in the cage II near the unchanged tetranuclear copper node,combined with its high microporosity to achieve the effect of dual functionalities for the improvement performance of C_(2)H_(2)adsorption and separation.展开更多
Metal-organic frameworks(MOFs) are a unique class of porous crystalline materials that have shown promise for a wide range of applications. MOFs have been explored as a new type of heterogeneous catalytic materials,...Metal-organic frameworks(MOFs) are a unique class of porous crystalline materials that have shown promise for a wide range of applications. MOFs have been explored as a new type of heterogeneous catalytic materials, because of their high surface area, uniform and tunable pores, facile functionalization and incorporation of catalytic active sites. The use of multi-functional sites MOF materials as catalysts for synergistic catalysis and tandem reactions has attracted increasing attention. In this review, we aim to introduce the construction of bi-or multi-functional MOF catalysts with cooperative or cascade functions via post-synthetic modification(PSM).展开更多
Cancer is one of the most complex diseases and the second leading cause of mortality worldwide.Due to its poor prognosis and challenges in diagnosis,eradicating cancer remains highly difficult.The limitations associat...Cancer is one of the most complex diseases and the second leading cause of mortality worldwide.Due to its poor prognosis and challenges in diagnosis,eradicating cancer remains highly difficult.The limitations associated with conventional therapies have led to the emergence of copious therapeutic strategies such as chemotherapy,phototherapy,starvation therapy,radiotherapy and immunotherapy;however,limited therapeutic efficacy,poor tumor cell selectivity and substantial adverse effects remain significant concern.Attributed to the expeditious advancement of nanotechnology,the amalgamation of nanomaterials with therapeutic approaches provides an opportunity to address the shortcomings of conventional chemotherapy.Metal-organic frameworks(MOFs),which consist of bridging ligands and ions/clusters connected by coordination bonds,have been widely used in cancer therapy to address the limitations of currently therapeutic interventions,such as poor efficacy,low stability and severe side effects.This potential arises from their tuneable porosities,high specific surface area-to-volume ratio,tailorable diameters,tractable morphologies,variegated compositions,biocompatibility and facile functionalization.We summarized the role of MOF-based nanoplatforms along with mechanistic insights into emerging avenues-such as cuproptosis,ferroptosis,cell-penetrating and biomimetic MOFs,and tumor microenvironment-responsive MOFs-alongside recent advancements in mono-and multifunctional cancer therapeutics.Theragnostic and imaging functionalities,as well as regulatory considerations and future prospects of MOF-based nanoplatforms utilized in cancer treatment,are also discussed.展开更多
Controlled synthesis of two-dimensional covalent organic frameworks(2D COFs),including stoichiometric and sub-stoichiometric variations,is a topic of growing interest due to its potential in gas separation application...Controlled synthesis of two-dimensional covalent organic frameworks(2D COFs),including stoichiometric and sub-stoichiometric variations,is a topic of growing interest due to its potential in gas separation applications.In this study,we successfully synthesized three distinct 2D COFs by carefully adjusting solvent compositions and monomer ratios during the synthesis of[4+4]type COFs.These included a stoichiometric[4+4]type COF and two sub-stoichiometric[4+2]type COFs,featuring unreacted amino or formyl groups.The resulting COFs exhibit different gas adsorption and separation properties.Specifically,sub-stoichiometric COF-DA with residual amino groups shows comparable adsorption capacity for C_(2)H_(2),C_(2)H_(4),and CO_(2)to stoichiometric COF-DAPy.In contrast,sub-stoichiometric COF-Py with residual formyl groups displays enhanced adsorption selectivity for C_(2)H_(2)/C_(2)H_(4)and C_(2)H_(2)/CO_(2)separation,with the C_(2)H_(2)/C_(2)H_(4)selectivity being the highest among reported COFs,attributed to increased pore polarity resulting from the presence of formyl groups.This study not only offers an additional example of substoichiometric COF synthesis but also advocates for further exploration of sub-stoichiometric COF materials,particularly in the field of gas adsorption and separation.展开更多
Environmental pollution and energy deficiency represent major problems for the sustainability of the modern world. Photocatalysis has recently emerged as an effective and environmentally friendly technique to address ...Environmental pollution and energy deficiency represent major problems for the sustainability of the modern world. Photocatalysis has recently emerged as an effective and environmentally friendly technique to address some of these sustainability issues,although the key to the success of this approach is dependent on the photocatalysts themselves. Based on their attractive physic chemical properties,including their ultrahigh surface areas,homogeneous active sites and tunable functionality,metal-organic frameworks(MOFs) have become interesting platforms for the development of solar energy conversion devices. Furthermore,MOFs have recently been used in a wide variety of applications,including heterogeneous photocatalysis for pollutant degradation,organic transformations,hydrogen production and CO2 reduction. In this review,we have highlighted recent progress towards the application of MOFs in all of these areas. We have collected numerous reported examples of the use of MOFs in these areas,as well as providing some analysis of the key factors influencing the efficiency of these systems. Moreover,we have provided a detailed discussion of new strategies that have been developed for enhancing the photocatalytic activity of MOFs. Finally,we have provided an outlook for this area in terms of the future challenges and potential prospects for MOFs in photocatalysis.展开更多
Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the...Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the mission decision-making. Therefore, in this paper, we develop a mission decision-making method of multi-aircraft cooperatively attacking multi-target based on situational assessment. We have studied the situational assessment mathematical model based on the Dempster-Shafer(D-S) evidence theory and the mission decision-making mathematical model based on the game theory. The proposed mission decision-making method of antagonized airfight is validated by some simulation examples of a swarm of unmanned combat aerial vehicles(UCAVs)that carry out the mission of the suppressing of enemy air defenses(SEAD).展开更多
Cryosphere science research and development(R&D) has been strongly committed to public service, integrating natural sciences with socioeconomic impacts. Owing to the current shift from purely natural cryosphere sc...Cryosphere science research and development(R&D) has been strongly committed to public service, integrating natural sciences with socioeconomic impacts. Owing to the current shift from purely natural cryosphere scientific research to linking cryosphere science with socioeconomic and cultural science, cross-disciplinary research in this field is emerging, which advocates future cryosphere science research in this field. Utilizing the cryosphere service function(CSF), this study establishes CSF and its value evaluation system. Cryosphere service valuation can benefit the decisionmakers' and public's awareness of environmental protection. Implementing sustainable CSF utilization strategies and macroeconomic policymaking for global environmental protection will have profound and practical significance as well as avoid environmental degradation while pursuing short-term economic profits and achieving rapid economic development.展开更多
In this research,a hydroxyl group functionalized metal-organic framework(MOF),UiO-66-(OH)_(2),was synthesized as a "on-off-on" fluore scent switching nanoprobe for highly sensitive and selective detection of...In this research,a hydroxyl group functionalized metal-organic framework(MOF),UiO-66-(OH)_(2),was synthesized as a "on-off-on" fluore scent switching nanoprobe for highly sensitive and selective detection of Fe^(3+),ascorbic acid(AA) and acid phosphatase(ACP).UiO-66-(OH)_(2) emits yellow-green light under ultraviolet light,when Fe^(3+) was added,Fe^(3+) was chelated with hydroxyl group,the electrons in the excited state S_1 of the MOF transferred to the half-filled 3 d orbits of Fe^(3+),resulting in fluorescence quenching because of the nonradiative electron/hole recombination annihilation.AA could reduce Fe^(3+) to Fe^(2+),which can destroy the electron transfer between UiO-66-(OH)_(2) and Fe^(3+) after AA adding,resulted in nonoccurrence of the nonradiative electron transfer,leading to the recovery of UiO-66-(OH)_(2) fluorescence intensity.The probe can also be used to detect ACP based on the enzymolysis of 2-phospho-L-ascorbic acid(AAP) to produce AA.Benefitting from the hydroxyl group and the characteristics of UiO-66,including the high porosity and large surface area,the developed UiO-66-(OH)_(2) showed extensive advantages as a fluorescent probe for detection of multi-component,such as high sensitivity and selectivity,colorimetric detection,fast response kinetics and easy to operate,economical and secure.This is the first time to use active group functionalized MOFs as a multicomponent sensor for these three substances detection.展开更多
基金financially supported by the National Natural Science Foundation of China(62464010)Spring City Plan-Special Program for Young Talents(K202005007)+3 种基金Yunnan Talents Support Plan for Yong Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Key Laboratory of Artificial Microstructures in Yunnan Higher EducationFrontier Research Team of Kunming University 2023。
文摘Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.
基金the financial support from National Natural Science Foundation of China (No. 21503097)Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_3905)。
文摘Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of Cu-BTC, a copper-based MOF, and its derivatives Cu TM-BTC via the substitution of transition metal(TM) elements at the Cu site for photocatalytic overall water splitting(POWS) have been studied. POWS of Cu-BTC suffers from the sluggish hydrogen evolution reaction due to the large overpotential of 2.02 V and limited solar utilization due to a wide HOMO-LUMO gap of 4.11 e V. Via TM substitution, the HOMO-LUMO gap narrows but still satisfies the redox potentials when taken 3d-TM of Cr, Fe, Co or Ni, 4d-TM of Rh or Pd, or 5d-TM of Re or Pt into consideration, benefiting for the light absorption. Furthermore, Cr and Re could serve as active sites for hydrogen evolution with remarkably lowered overpotentials of 0.79 V and 0.28 V, respectively;similarly, oxygen evolution activities could be enhanced by Fe, Co and Rh because of their reduced overpotentials which are less than 0.5 V. Therefore,our findings pave guidance for designing Cu-BTC derivatives in overall water splitting.
文摘This study aims to construct a virtual twin testing framework for the safety of the intended functionality of intelligent connected vehicles to address the safety requirements of intelligent driving and transportation systems.The research methods include the construction of a theoretical model of safety for intelligent connected vehicles based on the concept of virtual twins,the correlation study between key concepts and functional safety,and the application research of virtual twin technology in the safety testing of intelligent connected vehicles.The results reveal that the virtual twin testing framework can effectively enhance the functional safety of intelligent connected vehicles,reduce development costs,and shorten the product launch cycle.The conclusion suggests that this framework provides strong support for the healthy development of the intelligent connected vehicle industry and has a positive impact on the safety and efficiency of intelligent transportation systems.
基金supported by the Singapore Ministry of Education,and the National Research Foundation(NRF)for research conducted at the National University of Singapore(CRP NRF-CRP26-2021-0003).
文摘Lithium sulfur batteries(LSBs)show great promise as next-generation batteries due to their high energy density.However,commercialization is hindered by limited cycle life,fast capacity decay and poor sulfur utilization,primarily due to the intricate phase evolution during battery operation and insulating characteristics of sulfur,leading to uncontrollable sulfur and polysulfide distribution and inefficient conversion kinetics.Therefore,the incorporation of metal and covalent organic frameworks(MOFs and COFs)has been widely employed in LSBs to serve as hosts,enabling the regulation of conversion and diffusion behavior of vip species,including lithium ions,sulfur and polysulfides,within their well-defined nanosized cavities.Nevertheless,pristine frameworks often fail to meet the requisite standards,and framework functionalization offers unique opportunities to tailor desired attributes and facilitate selective host-vip interactions in LSBs.However,a thorough understanding on how to precisely customize the nano-channels with functional groups to promote such interactions remains largely unexplored.In this review,we provide a systematic discussion on how the grafting of functional groups containing various active sites can play a role in host-vip chemistry,and focus on the latest advancements in engineering functionalized MOFs and COFs as charged-species regulators to tackle the problems causing poor LSB electrochemical performance.The concepts of electrophilic and nucleophilic effects are proposed,uncovering the mechanisms of framework functionalization in LSBs and serving as guidance for future developments.
基金financially supported by the National Natural Science Foundation of China (Nos.51901189 and 51802265)Shaanxi Provincial Key R&D Program (No.2021KWZ17)+1 种基金China Postdoctoral Science Foundation Grant (No. 2020M683552)the Natural Science Foundation of Chongqing (No.cstc2020jcyj-msxmX0859)。
文摘Lithium-selenium batteries,as an advanced rechargeable battery system,have attracted wide attention.However,its application is hurdled by the ambiguous underlying mechanism such as the unclear active phase and the key role of the host materials.Herein,a three-dimensional(3D) functional matrix derived from the Co/Znmetal organic framework is synthesized to unravel the questions raised.It reveals that the strong interaction and voids in the 3D matrix serve to anchor the amorphous Se with high electrochemical properties.The obtained 3DC/Se exhibits 544.2 and 273.2 mAh·g^(-1) t current densities of 0.1C and 2.0C,respectively,with a diffusion-controlled mechanism.The excessive amount of Se beyond the loading capacity of the matrix leads to the formation of trigonal phase Se,which shows an unsatisfying electrochemical property.
基金financially supported by the National Natural Science Foundation of China (Nos.21727808,21971114,21908105,and 22205100)the Jiangsu Provincial Funds for Natural Science Foundation (No.BK20200090)。
文摘The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets and their synergistic effects have been studied recently for possessing the advantages of functional species as well as crystalline framework nanosheets.Hence,we have focused on the preparation methods and applications of functional crystalline framework nanosheets in this review.We introduced crystalline framework nanosheets and discussed the importance of integrating functional species with nanosheets to form functional crystalline framework nanosheets.Then,two aspects of the preparation methods of functional crystalline framework nanosheets were reviewed:in situ synthesis and post-synthesis modification.Subsequently,we discussed the properties of the crystalline framework nanosheets combined with various functional species and summarized their applications in catalysis,sensing,separation,and energy storage.Finally,we have shared our insights on the challenges of functional crystalline framework nanosheets,hoping to contribute to the knowledge base for optimizing the preparation methods,expanding categories,improving stability,and exploring potential applications.
文摘Covalent organic frameworks(COFs)have lately emerged as a blooming class of potential materials for photocatalytic water splitting because of their high crystallinity,huge surface areas,and structural versatility.However,the photocatalytic performance for most pure COFs face some limitations factors,such as the significant recombination of photogenerated carriers and slow charge transfer.Herein,a novel thioether-functionalized pyrene-based COF(S_(4)-COF)was effectively produced and chosen as a support for the immobilization of ultrafine gold nanoparticles(Au NPs).S_(4)-COF photocatalyst with Au as cocatalyst demonstrates remarkable photocatalytic activity with a H_(2) generation rate of 1377μmol g^(−1) h^(−1) under visible light(>420 nm),which is ca.4.5-fold increase comparing to that of pure S_(4)-COF(302μmol g^(−1) h^(−1)).Au NPs anchored on S_(4)-COF possess an ultrafine size distribution ranging from 1.75 to 6.25 nm with an average size centered at 3.8 nm,which benefits from the coordination interaction between thioether groups and Au.Meanwhile,the produced Au@S_(4)-COF can generate a stable photocatalytic H_(2) generation during the four recycles and preserve its crystallinity structure after the stability testing.The Au NPs anchored on the S_(4)-COF photocatalyst can greatly accelerate the separation of photogenerated carriers and increase charge transfer because of the combined function of Au NPs and thioether groups.Such a method can not only prevent the aggregation of Au NPs onto thioether-containing COFs to achieve long-term photostability but also allow uniform dispersion for an ordered structure of photocatalysts.This work provides a rational strategy for designing and preparing COF-based photocatalysts for solar-driven H_(2) production.
基金supported by the National Natural Science Foundation of China (21972021,22271281,22325109,22171263,62227815,91961115,22494633,22422508)the Natural Science Foundation of Fujian Province (2024J01238,2022J06032,2021J02017)+5 种基金the Scientific Research and Equipment Development Project of Chinese Academy of Sciences (YJKYQ20210024)the Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China (2021ZR101)the Self-deployment Project Research Program of Haixi Institutes,Chinese Academy of Sciences (CXZX-2022-GH09,CXZX-2023-GS03,CXZX-2022-JQ03)the Key Research Project of Chinese Academy of Sciences(KGFZD-145-25-21)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB1170000)the 111 Project (D16008)。
文摘The investigation of charge carrier kinetics has long been a cornerstone of polymer photocatalysis research.However,the role of proton transport behavior in photocatalytic processes has often been underappreciated,despite its fundamental importance in proton-coupled electron-transfer reactions.Addressing this gap,we present a novel BF_(2)-bridged covalent organic framework(C2-COF-BF2) that undergoes post-synthetic modification with boron trifluoride,designed to confer a dual functional advantage.Specifically,the incorporated BF_(2) moieties are engineered to induce a donor-acceptor effect and potentially serve as continuous supply sites for activated protons.This bifunctional role not only enhances charge separation and migration while suppressing electron-hole recombination but also facilitates proton transport,thereby enabling improved performance in both photocatalytic hydrogen evolution reaction(HER) and H_(2) O_(2) production.Remarkably,the photocatalytic HER performance of C2-COF-BF2(AQY_(450 nm)= 8.78%) ranks among the highest efficiencies reported for COF-based photocatalysts to date.These findings highlight an innovative pathway for advancing the rational design of COF photocatalysts,offering a synergistic optimization of charge carrier kinetics and mass transfer processes to achieve unprecedented photocatalytic efficiency.
基金supported by the "Top-Notch Students Training in Basic Disciplines" undergraduate program of Ministry of Education of China
文摘Multivariate metal-organic frameworks(MTV-MOFs) with different ratios of terephthalate(BDC) linker and amino-benzenedicarboxylate(BDC-NH2) linker were synthesized through both direct synthesis from linker mixture and linker exchange of activated single-linker MOFs. Functionality proportion was impacted by the thermodynamics during the one-pot MOF construction, resulting in preference of BDC over BDC-NH2 in the MTV-MOF, in agreement with the quantum mechanics calculations. The functionality difference also affects the thermodynamics in the linker exchange process, as indicated by the more effective linker exchange in BDC-NH2-based IRMOF-3 than in BDC-based MOF-5. Furthermore,the thermal decomposition temperatures and chemical integrity upon ambient air exposure of these MOFs with variate functionalities were investigated, and it reveals that higher proportion of BDC in the MTV-MOF crystals contribute to both higher thermal and higher chemical stabilities.
基金supported by the Natural Science Foundation of Fujian Province(2024J010040 and 2024J09054)the Chinese Academy of Sciences Youth Interdisciplinary Team(JCTD-2022-12)the National Natural Science Foundation of China(22272178)。
文摘The development of C-H functionalization methods for directly converting C-H bonds into C-C bonds has drawn significant attention.These reactions typically require the concurrent involvement of distinct catalytic processes,such as photoredox and transition metal catalysis.Combining the corresponding catalytic sites within a single catalyst,instead of adding extra cocatalysts,remains a significant challenge.Here,we present a novel pyridone-based hydrogen-bonded organic framework(HOF),named PFC-943,which exhibits exceptional visible-light absorption properties while integrating both photosensitizing and redox-active sites within its skeleton.Femtosecond transient absorption spectroscopy(fs-TA)reveals that the excited-state electrons of PFC-943 in ethanol exhibit an extended lifetime.Leveraging this unique excited-state electron behavior,PFC-943converts oxygen into highly reactive singlet oxygen(^(1)O_(2))via an energy transfer(En T)pathway and facilitates a key carbanion intermediate through a single electron transfer(SET)process.Consequently,the metal-free PFC-943 exhibits remarkable photocatalytic performance in C-H bond arylation reaction of quinoxalin-2(1H)-one.This work presents the first dual-functional HOF for radical-mediated C-H functionalization reactions,offering a novel approach to C-H bond functionalization.
基金supported by the National Natural Science Foundation of China(No.62175129)the Taishan Scholar of Shandong Province(No.tsqn202306014)the Qilu Young Scholar of Shandong University.
文摘The investigation of thermal transport properties of materials has become increasingly important in technological applications,including thermal management and energy conversion.Recently,ultrahigh or low thermal conductivity has been reported in nitride,boride,and chalcogenide by different strategies.However,the strategy to design oxide crystals with unique thermal properties is also a challenge.In this work,a new ternary oxide crystal Ga_(2)TeO_(6) is designed and expected to show high thermal conductivity due to its lone pairs-free octahedra connected along the caxis by sharing edges.The thermal conductivities of Ga_(2)TeO_(6) crystal are determined to be 19.2 and 23.9Wm^(-1) K^(-1) along the a-and c-axis directions at 323 K,respectively,which are significantly higher than those of most reported oxide crystals.First-principles calculations and crystal structure analyses reveal that the Ga_(2)TeO_(6) crystal shows high sound velocity and weak lattice anharmonicity due to lone pairs-free octahedra and highly symmetric group arrangement.The results suggest that much attention must be paid to the polyhedron with lone pairs and its arrangement in materials design to balance the functions and thermal properties.
基金funded by the National Natural Science Foundation of China(grant no.82170580 to Y.Z.)the Key Research and Development Program of Jiangxi Province(20212BBG73004 to X.W.)the Postdoctoral Fellowship Program of CPSF(GZB20230283 to W.Z.).
文摘Helicobacter pylori colonizes over 50%of people worldwide.Biofilm formation through penetrating gastric mucus and resistance acquired by H.pylori markedly reduces the efficacy of traditional antibiotics.The present triple therapy and bismuth-based quadruple therapy inevitably causes intestinal flora disturbance and fails to address the excessive H.pylori-triggered inflammatory response.Herein,a mucus-permeable therapeutic platform(Cu-MOF@NF)that consists of copper-bearing metal-organic framework(Cu-MOF)loaded with nitrogen-doped carbon dots and naturally active polysaccharide fucoidan is developed.The experimental results demonstrate that Cu-MOF@NF can penetrate the mucus layer and hinder H.pylori from adhering on gastric epithelial cells of the stomach.Notably,released Cu2+can degrade the polysaccharides in the biofilm and interfere with the cyclic growing mode of"bacterioplankton↔biofilm",thereby preventing recurrent and persistent infection.Compared with traditional triple therapy,the Cu-MOF@NF not only possesses impressive antibacterial effect(even include multidrug-resistant strains),but also improves the inflammatory microenvironment without disrupting the balance of intestinal flora,providing a more efficient,safe,and antibiotic-free new approach to eradicating H.pylori.
基金financially supported by the National Natural Science Foundation of China(Nos.21975044,21971038,21922810 and 22271046)the Fujian Provincial Department of Science and Technology(Nos.2023J01355,2023J011106 and 2022R1022001).
文摘Achieving efficient adsorption and separation of C_(2)H_(2)/CO_(2)mixtures is a goal that people have always pursued to improve the situation of high energy consumption brought by traditional separation technologies in industry today.High-nuclearity metal cluster-based MOFs with different functionalities are promising for this separation,but it is a complicated and difficult task to precisely control their structures.The strategy of pore-space partition(PSP)is a powerful way to construct this type MOFs,which has the characteristic of isostructural relationship,and can be resulted in a similar performance for them.Therefore,it is an interesting work to explore the effect of MOFs property by adjusting the size of PSP dividers.Herein,three tetranuclear Cu(Ⅱ)cluster-based MOFs(FJU-112/113/114)with dual functionalities has been successfully obtained by PSP strategy with various lengths of divider units.With the highest microporosity and unique functional site,FJU-114 realized a good improvement in the adsorption and separation performance of C_(2)H_(2)/CO_(2).The gas adsorption and lab-scale C_(2)H_(2)/CO_(2)breakthrough experiments demonstrated that FJU-114 exhibits the highest adsorption uptake of 77 cm^(3)/g for C_(2)H_(2),and shows the best separation factor of 4.2 among three MOFs.The GCMC simulation reveals that a stronger adsorption binding site of C_(2)H_(2)in FJU-114a located in the cage II near the unchanged tetranuclear copper node,combined with its high microporosity to achieve the effect of dual functionalities for the improvement performance of C_(2)H_(2)adsorption and separation.
基金supported by the National Natural Science Foundation of China (Nos. 21371069 and 21621001)
文摘Metal-organic frameworks(MOFs) are a unique class of porous crystalline materials that have shown promise for a wide range of applications. MOFs have been explored as a new type of heterogeneous catalytic materials, because of their high surface area, uniform and tunable pores, facile functionalization and incorporation of catalytic active sites. The use of multi-functional sites MOF materials as catalysts for synergistic catalysis and tandem reactions has attracted increasing attention. In this review, we aim to introduce the construction of bi-or multi-functional MOF catalysts with cooperative or cascade functions via post-synthetic modification(PSM).
基金funding support by the Department of Pharmaceuticals(DoP),Ministry of Chemicals and Fertilizers,Govt.of India to“Pharmaceutical Innovation and Translational Research Lab”(PITRL),National Institute of Pharmaceutical Education and Research(NIPER),Hyderabad,INDIA.
文摘Cancer is one of the most complex diseases and the second leading cause of mortality worldwide.Due to its poor prognosis and challenges in diagnosis,eradicating cancer remains highly difficult.The limitations associated with conventional therapies have led to the emergence of copious therapeutic strategies such as chemotherapy,phototherapy,starvation therapy,radiotherapy and immunotherapy;however,limited therapeutic efficacy,poor tumor cell selectivity and substantial adverse effects remain significant concern.Attributed to the expeditious advancement of nanotechnology,the amalgamation of nanomaterials with therapeutic approaches provides an opportunity to address the shortcomings of conventional chemotherapy.Metal-organic frameworks(MOFs),which consist of bridging ligands and ions/clusters connected by coordination bonds,have been widely used in cancer therapy to address the limitations of currently therapeutic interventions,such as poor efficacy,low stability and severe side effects.This potential arises from their tuneable porosities,high specific surface area-to-volume ratio,tailorable diameters,tractable morphologies,variegated compositions,biocompatibility and facile functionalization.We summarized the role of MOF-based nanoplatforms along with mechanistic insights into emerging avenues-such as cuproptosis,ferroptosis,cell-penetrating and biomimetic MOFs,and tumor microenvironment-responsive MOFs-alongside recent advancements in mono-and multifunctional cancer therapeutics.Theragnostic and imaging functionalities,as well as regulatory considerations and future prospects of MOF-based nanoplatforms utilized in cancer treatment,are also discussed.
基金supported by the National Key Research and Development Project of China(No.2022YFE0113800)the National Natural Science Foundation of China(No.22375179)+1 种基金the startup grant(No.2019125016829)in Zhejiang University of Technologypartially supported by the National Innovation and Entrepreneurship Training Program(No.202310337063)。
文摘Controlled synthesis of two-dimensional covalent organic frameworks(2D COFs),including stoichiometric and sub-stoichiometric variations,is a topic of growing interest due to its potential in gas separation applications.In this study,we successfully synthesized three distinct 2D COFs by carefully adjusting solvent compositions and monomer ratios during the synthesis of[4+4]type COFs.These included a stoichiometric[4+4]type COF and two sub-stoichiometric[4+2]type COFs,featuring unreacted amino or formyl groups.The resulting COFs exhibit different gas adsorption and separation properties.Specifically,sub-stoichiometric COF-DA with residual amino groups shows comparable adsorption capacity for C_(2)H_(2),C_(2)H_(4),and CO_(2)to stoichiometric COF-DAPy.In contrast,sub-stoichiometric COF-Py with residual formyl groups displays enhanced adsorption selectivity for C_(2)H_(2)/C_(2)H_(4)and C_(2)H_(2)/CO_(2)separation,with the C_(2)H_(2)/C_(2)H_(4)selectivity being the highest among reported COFs,attributed to increased pore polarity resulting from the presence of formyl groups.This study not only offers an additional example of substoichiometric COF synthesis but also advocates for further exploration of sub-stoichiometric COF materials,particularly in the field of gas adsorption and separation.
基金supported by the National Natural Science Foundation of China(2127303621177024)+1 种基金the National Basic Research Program of China(973 Program2014CB239303)~~
文摘Environmental pollution and energy deficiency represent major problems for the sustainability of the modern world. Photocatalysis has recently emerged as an effective and environmentally friendly technique to address some of these sustainability issues,although the key to the success of this approach is dependent on the photocatalysts themselves. Based on their attractive physic chemical properties,including their ultrahigh surface areas,homogeneous active sites and tunable functionality,metal-organic frameworks(MOFs) have become interesting platforms for the development of solar energy conversion devices. Furthermore,MOFs have recently been used in a wide variety of applications,including heterogeneous photocatalysis for pollutant degradation,organic transformations,hydrogen production and CO2 reduction. In this review,we have highlighted recent progress towards the application of MOFs in all of these areas. We have collected numerous reported examples of the use of MOFs in these areas,as well as providing some analysis of the key factors influencing the efficiency of these systems. Moreover,we have provided a detailed discussion of new strategies that have been developed for enhancing the photocatalytic activity of MOFs. Finally,we have provided an outlook for this area in terms of the future challenges and potential prospects for MOFs in photocatalysis.
基金supported by the Aeronautical Science Foundation of China (No. 05D01002)
文摘Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the mission decision-making. Therefore, in this paper, we develop a mission decision-making method of multi-aircraft cooperatively attacking multi-target based on situational assessment. We have studied the situational assessment mathematical model based on the Dempster-Shafer(D-S) evidence theory and the mission decision-making mathematical model based on the game theory. The proposed mission decision-making method of antagonized airfight is validated by some simulation examples of a swarm of unmanned combat aerial vehicles(UCAVs)that carry out the mission of the suppressing of enemy air defenses(SEAD).
基金funded by National Basic Research Program of China (2013CBA01804, 2013CBA01808)Technology Services Network Program (STS-HHS Program) of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciencesthe independent subject from Stake Key Laboratory of Cryospheric Sciences, Chinese Academy of Sciences
文摘Cryosphere science research and development(R&D) has been strongly committed to public service, integrating natural sciences with socioeconomic impacts. Owing to the current shift from purely natural cryosphere scientific research to linking cryosphere science with socioeconomic and cultural science, cross-disciplinary research in this field is emerging, which advocates future cryosphere science research in this field. Utilizing the cryosphere service function(CSF), this study establishes CSF and its value evaluation system. Cryosphere service valuation can benefit the decisionmakers' and public's awareness of environmental protection. Implementing sustainable CSF utilization strategies and macroeconomic policymaking for global environmental protection will have profound and practical significance as well as avoid environmental degradation while pursuing short-term economic profits and achieving rapid economic development.
基金supported by grants awarded by the National Natural Science Foundation of China(Nos.21505084,21775089)Natural Science Foundation Projects of Shandong Province(No.ZR2014BM029)+2 种基金Key Research and Development Program of Shandong Province(No.2017GSF19109)Innovation Project of Shandong Graduate Education(No.SDYY16091)Outstanding Youth Foundation of Shandong Province(No.ZR2017JL010)。
文摘In this research,a hydroxyl group functionalized metal-organic framework(MOF),UiO-66-(OH)_(2),was synthesized as a "on-off-on" fluore scent switching nanoprobe for highly sensitive and selective detection of Fe^(3+),ascorbic acid(AA) and acid phosphatase(ACP).UiO-66-(OH)_(2) emits yellow-green light under ultraviolet light,when Fe^(3+) was added,Fe^(3+) was chelated with hydroxyl group,the electrons in the excited state S_1 of the MOF transferred to the half-filled 3 d orbits of Fe^(3+),resulting in fluorescence quenching because of the nonradiative electron/hole recombination annihilation.AA could reduce Fe^(3+) to Fe^(2+),which can destroy the electron transfer between UiO-66-(OH)_(2) and Fe^(3+) after AA adding,resulted in nonoccurrence of the nonradiative electron transfer,leading to the recovery of UiO-66-(OH)_(2) fluorescence intensity.The probe can also be used to detect ACP based on the enzymolysis of 2-phospho-L-ascorbic acid(AAP) to produce AA.Benefitting from the hydroxyl group and the characteristics of UiO-66,including the high porosity and large surface area,the developed UiO-66-(OH)_(2) showed extensive advantages as a fluorescent probe for detection of multi-component,such as high sensitivity and selectivity,colorimetric detection,fast response kinetics and easy to operate,economical and secure.This is the first time to use active group functionalized MOFs as a multicomponent sensor for these three substances detection.