期刊文献+
共找到818篇文章
< 1 2 41 >
每页显示 20 50 100
Research progress of high-entropy cathode materials for sodium-ion batteries 被引量:1
1
作者 Fan Wu Shaoyang Wu +2 位作者 Xin Ye Yurong Ren Peng Wei 《Chinese Chemical Letters》 2025年第4期20-33,共14页
In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well... In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected. 展开更多
关键词 High-entropy material sodium-ion battery Cathode materials Phase transition Structure
原文传递
Revealing the thermal stability of sodium-ion battery from material to cell level using combined thermal-gas analysis 被引量:1
2
作者 Anqi Teng Yue Zhang +9 位作者 Lihua Jiang Yue Zhang Hongbin Dang Chenchen Wang Zheng Fang Yong Liu Xuefeng Wang Huang Li Wenxin Mei Qingsong Wang 《Journal of Energy Chemistry》 2025年第4期838-849,共12页
The future large-scale application of sodium-ion batteries(SIBs)is inseparable from their excellent electrochemical performance and reliable safety characteristics.At present,there are few studies focusing on their sa... The future large-scale application of sodium-ion batteries(SIBs)is inseparable from their excellent electrochemical performance and reliable safety characteristics.At present,there are few studies focusing on their safety performance.The analysis of thermal stability and structural changes within a single material cannot systematically describe the complex interplay of components within the battery system during the thermal runaway process.Furthermore,the reaction between the battery materials themselves and their counterparts within the system can stimulate more intense exothermic behavior,thereby affecting the safety of the entire battery system.Therefore,this study delved into the thermal generation and gas evolution characteristics of the positive electrode(Na_(x)Ni_(1/3)Fe_(1/3)Mn_(1/3)O_(2),NFM111)and the negative electrode(hard carbon,HC)in SIBs,utilizing various material combinations.Through the integration of microscopic and macroscopic characterization techniques,the underlying reaction mechanisms of the positive and negative electrode materials within the battery during the heating process were elucidated.Three important results are derived from this study:(Ⅰ)The instability of the solid electrolyte interphase(SEI)leads to its decomposition at temperatures below 100℃,followed by extensive decomposition within the range of 100-150℃,yielding heat and the formation of inorganic compounds,such as Na_(2)CO_(3)and Na_(2)O;(Ⅱ)The reaction between NFM111 and the electrolyte constitutes the primary exothermic event during thermal abuse,with a discernible reaction also occurring between sodium metal and the electrolyte throughout the heating process;(Ⅲ)The heat production and gas generation behaviors of multi-component reactions do not exhibit complete correlation,and the occurrence of gas production does not necessarily coincide with thermal behavior.The results presented in this study can provide useful guidance for the safety improvement of SIBs. 展开更多
关键词 sodium-ion battery safety Thermal stability Gas generation DECOMPOSITION
在线阅读 下载PDF
Se-Regulated Mn S Porous Nanocubes Encapsulated in Carbon Nanofibers as High-Performance Anode for Sodium-Ion Batteries 被引量:1
3
作者 Puwu Liang Duo Pan +7 位作者 Xiang Hu Ke RYang Yangjie Liu Zijing Huo Zheng Bo Lihong Xu Junhua Xu Zhenhai Wen 《Nano-Micro Letters》 2025年第10期239-258,共20页
Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, th... Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, their application is hindered by poor cycling stability, resulting from severe volume changes during cycling and slow reaction kinetics due to their complex crystal structure. Here, an efficient and straightforward strategy was employed to in-situ encapsulate single-phase porous nanocubic MnS_(0.5)Se_(0.5) into carbon nanofibers using electrospinning and the hard template method, thus forming a necklace-like porous MnS_(0.5)Se_(0.5)-carbon nanofiber composite(MnS_(0.5)Se_(0.5)@N-CNF). The introduction of Se significantly impacts both the composition and microstructure of MnS_(0.5)Se_(0.5), including lattice distortion that generates additional defects, optimization of chemical bonds, and a nano-spatially confined design. In situ/ex-situ characterization and density functional theory calculations verified that this MnS_(0.5)Se_(0.5)@N-CNF allevi- ates the volume expansion and facilitates the transfer of Na+/electron. As expected, MnS_(0.5)Se_(0.5)@N-CNF anode demonstrates excellent sodium storage performance, characterized by high initial Coulombic efficiency(90.8%), high-rate capability(370.5 m Ahg^(-1) at 10 Ag^(-1)) and long durability(over 5000 cycles at 5 Ag^(-1)). The MnS_(0.5)Se_(0.5)@N-CNF//NVP@C full cell, assembled with MnS_(0.5)Se_(0.5)@N-CNF as anode and Na_(3)V_(2)(PO_4)_(3)@C as cathode, exhibits a high energy density of 254 Wh kg^(-1) can be provided. This work presents a novel strategy to optimize the design of anode materials through structural engineering and Se substitution, while also elucidating the underlying reaction mechanisms. 展开更多
关键词 sodium-ion batteries ANODE MnS_(0.5)Se_(0.5) Carbon nanofiber Defects
在线阅读 下载PDF
A low redox potential and long life organic anode material for sodium-ion batteries 被引量:1
4
作者 Zhi Li Yang Wei +7 位作者 Kang Zhou Xin Huang Xing Zhou Jie Xu Taoyi Kong Junwei Lucas Bao Xiaoli Dong Yonggang Wang 《Journal of Energy Chemistry》 2025年第1期557-564,共8页
Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials ... Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs. 展开更多
关键词 Organic anode material Low redox potential Composite anode sodium-ion batteries
在线阅读 下载PDF
Melting plus reactive wetting of solid acid enabling stable high-voltage cycling of layered oxide cathodes for sodium-ion batteries 被引量:1
5
作者 Debin Ye Guohu Chen +4 位作者 Junzhou Xie Chunliu Li Dan Liang Wenwei Wu Xuehang Wu 《Journal of Energy Chemistry》 2025年第6期252-260,I0007,共10页
Expanding the cutoff voltage of layered oxide cathodes for sodium-ion batteries(SIBs)is crucial for overcoming their existing energy density limitations.However,cationic/anodic redox-triggered multiple phase transitio... Expanding the cutoff voltage of layered oxide cathodes for sodium-ion batteries(SIBs)is crucial for overcoming their existing energy density limitations.However,cationic/anodic redox-triggered multiple phase transitions and unfavorable interfacial side reactions accelerate capacity and voltage decay.Herein,we present a straightforward melting plus reactive wetting strategy using H_(3)BO_(3)for surface modification of O_(3)-type Na_(0.9)Cu_(0.12)Ni_(0.33)Mn_(0.4)Ti_(0.15)O_(2)(CNMT).The transformation of H_(3)BO_(3)from solid to liquid under mild heating facilitates the uniform dispersion and complete surface coverage of CNMT particles.By neutralizing the residual alkali and extracting Na^(+)from the CNMT lattice,H_(3)BO_(3)forms a multifunctional Na_(2)B_(2)O_(5)-dominated layer on the CNMT surface.This Na_(x)B_(y)O_(z)(NBO)layer plays a positive role in providing low-barrier Na^(+)transport channels,suppressing phase transitions,and minimizing the generation of O_(2)/CO_(2)gases and resistive byproducts.As a result,at a charge cutoff voltage of 4.5 V,the NBO-coated CNMT delivers a high discharge capacity of 149,1 mAh g^(-1)at 10 mA g^(-1)and exhibits excellent cycling stability at 100 mA g^(-1)over 200 cycles with a higher capacity retention than that of pristine CNMT(86,4%vs,62.1%).This study highlights the effectiveness of surface modification using lowmelting-point solid acids,with potential applications for other layered oxide cathode materials to achieve stable high-voltage cycling.This proposed strategy opens new avenues for the construction of highquality coatings for high-voltage layered oxide cathodes in SIBs. 展开更多
关键词 sodium-ion batteries O_(3)-type layered oxide Solid H_(3)BO_(3) Surface modification High-voltage stability
在线阅读 下载PDF
Construction of 3D porous Cu_(1.81)S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage
6
作者 Chen Chen Hongyu Xue +6 位作者 Qilin Hu Mengfan Wang Pan Shang Ziyan Liu Tao Peng Deyang Zhang Yongsong Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期191-200,共10页
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d... Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode. 展开更多
关键词 copper sulfide nanoparticles porous carbon framework fast charging long-cycle performance sodium-ion full batteries
在线阅读 下载PDF
Microstructure-mechanism-performance relationships in hard carbon anode materials for sodium-ion batteries
7
作者 LI Jin-ting Sawut Nurbiye +3 位作者 ZHAO Yi-chu LIU Ping WANG Yan-xia CAO Yu-liang 《新型炭材料(中英文)》 北大核心 2025年第4期860-869,共10页
The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performan... The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performance.However,there is still disagreement regarding the sodium storage mechanism in the low-voltage plateau region of HC anodes,and the structure-performance relationship between its complex multiscale micro/nanostructure and electrochemical behavior remains unclear.This paper summarizes current research progress and the major problems in understanding HC’s microstructure and sodium storage mechanism,and the relationship between them.Findings about a universal sodium storage mechanism in HC,including predictions about micropore-capacity relationships,and the opportunities and challenges for using HC anodes in commercial SIBs are presented. 展开更多
关键词 sodium-ion battery Hard carbon ANODE Closed pore
在线阅读 下载PDF
Tailoring the pore structure of hard carbon for enhanced sodium-ion battery anodes
8
作者 SONG Ning-Jing MA Can-liang +3 位作者 GUO Nan-nan ZHAO Yun LI Wan-xi LI Bo-qiong 《新型炭材料(中英文)》 北大核心 2025年第2期377-391,共15页
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv... Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials. 展开更多
关键词 Pore structure regulation Closed pore Corn cob Hard carbon anode material sodium-ion batteries
在线阅读 下载PDF
GeP_(3)/Ketjen Black Composite:Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries
9
作者 YANG Shuqi YANG Cunguo +2 位作者 NIU Huizhu SHI Weiyi SHU Kewei 《无机材料学报》 北大核心 2025年第3期329-336,I0010,I0011,共10页
Metal phosphides have been studied as prospective anode materials for sodium-ion batteries(SIBs)due to their higher specific capacity compared to other anode materials.However,rapid capacity decay and limited cycle li... Metal phosphides have been studied as prospective anode materials for sodium-ion batteries(SIBs)due to their higher specific capacity compared to other anode materials.However,rapid capacity decay and limited cycle life caused by volume expansion and low electrical conductivity of phosphides in SIBs remain still unsolved.To address these issues,GeP_(3) was first prepared by high-energy ball milling,and then Ketjen black(KB)was introduced to synthesize composite GeP_(3)/KB anode materials under controlled milling speed and time by a secondary ball milling process.During the ball milling process,GeP_(3) and KB form strong chemical bonds,resulting in a closely bonded composite.Consequently,the GeP_(3)/KB anodes was demonstrated excellent sodium storage performance,achieving a high reversible capacity of 933.41 mAh·g^(–1) at a current density of 0.05 A·g^(–1) for a special formula of GeP_(3)/KB-600-40 sample prepared at ball milling speed of 600 r/min for 40 h.Even at a high current density of 2 A·g^(–1) over 200 cycles,the capacity remains 314.52 mAh·g^(–1) with a retention rate of 66.6%.In conclusion,this work successfully prepares GeP_(3)/KB anode-carbon composite for electrodes by high-energy ball milling,which can restrict electrode volume expansion,enhance capacity,and improve cycle stability of SIBs. 展开更多
关键词 sodium-ion battery GeP_(3)/C composite Ketjen black ball milling
在线阅读 下载PDF
Recent progress on the materials design towards thermally safe sodium-ion batteries
10
作者 Zhen-Hui Luo Dian Zhang +8 位作者 Jia-Xin Guo Feng Jiang Nai-Lu Shen Yun-Fei Du Zhi-Jun Jiang Tao Wang Xu Liu Xin-Bing Cheng Yuping Wu 《Journal of Energy Chemistry》 2025年第3期555-575,共21页
Sodium-ion batteries stand out as potential candidates for large-scale energy storage systems due to the abundant resource of sodium.However,similar to lithium-ion batteries,there also exist challenges related to ther... Sodium-ion batteries stand out as potential candidates for large-scale energy storage systems due to the abundant resource of sodium.However,similar to lithium-ion batteries,there also exist challenges related to thermal safety in practical applications.The cathode,anode,and electrolyte of sodium-ion batteries can significantly influence the occurrence of thermal runaway events.Comprehensive understandings on the thermal behaviors of these components and their interactions are critically pivotal for unraveling the thermal runaway mechanisms of sodium-ion batteries and ensuring their safe operations.This review,pivoting on the origins and solutions for thermal runaway of sodium-ion batteries,summarizes and discusses the recent progress on thermal stability characteristics of the cathode,anode,and electrolyte.Some strategies are suggested to potentially enhance safety performance.The review aims to offer valuable insights for a more profound exploration of the thermal runaway mechanisms and inform the design of safe sodium-ion batteries. 展开更多
关键词 sodium-ion battery Thermal runaway Safety CATHODE ANODE ELECTROLYTE
在线阅读 下载PDF
Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery
11
作者 Jiaojiao Liang Youming Peng +6 位作者 Zhichao Xu Yufei Wang Menglong Liu Xin Liu Di Huang Yuehua Wei Zengxi Wei 《Chinese Chemical Letters》 2025年第1期585-590,共6页
Flexible energy storage devices have been paid much attention and adapts to apply in various fields.Benefiting from the active sites of boron(B)and phosphorus(P)doping materials,co-doped carbon materials are widely us... Flexible energy storage devices have been paid much attention and adapts to apply in various fields.Benefiting from the active sites of boron(B)and phosphorus(P)doping materials,co-doped carbon materials are widely used in energy storage devices for the enhanced electrochemical performance.Herein,B and P co-doped flexible carbon nanofibers with nitrogen-rich(B-P/NC)are investigated with electro-spinning for sodium-ion battery.The flexible of binderless B-P/NC with annealing of 600℃(B-P/NC-600)exhibits the remarkable performance for the robust capacity of 200 mAh/g at 0.1 A/g after 500 cycles and a durable reversible capacity of 160 m Ah/g even at 1 A/g after 12,000 cycles,exhibiting the equally commendable stability of flexible B-P/NC-600.In addition,B-P/NC-600 delivers the reversible capacity of265 m Ah/g with the test temperature of 60℃.More importantly,the flexible B-P/NC-600 is fabricated as anode for the whole battery,delivering the capacity of 90 m Ah/g at 1 A/g after 200 cycles.Meanwhile,theoretical calculation further verified that boron and phosphorus co-doping can improve the adsorption capacity of nitrogen carbon materials.The favorable performance of flexible B-P/NC-600 can be ascribed to the nitrogen-rich carbon nanofibers with three-dimensional network matrix for the more active site of boron and phosphorus co-doping.Our work paves the way for the improvement of flexible anodes and wide-operating temperature of sodium-ion batteries by doping approach of much heteroatom. 展开更多
关键词 CO-DOPED FLEXIBLE Carbon nanofibers Durable sodium-ion batteries
原文传递
Rapid synthesis of two-dimensional MoB MBene anodes for high-performance sodium-ion batteries
12
作者 Wei Xiong Xingyu Feng +6 位作者 Tao Huang Zhencheng Huang Xuanlong He Jianhong Liu Yi Xiao Xinzhong Wang Qianling Zhang 《Journal of Materials Science & Technology》 2025年第9期67-76,共10页
Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electric... Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electrical conductivity.Unlike well-studied graphene,perovskite and MXene materials in various fields,the research about MBene is still in its infancy.The inadequate exploration of efficient etching methods impedes their further study.Herein,we put forward an efficient microwave-assisted hydrother-mal alkaline solution etching strategy for exfoliating MoAlB MAB phase into 2D MoB MBenes with a well accordion-like structure,which displays a remarkable electrochemical performance in sodium ion batter-ies(SIBs)with a reversible specific capacity of 196.5 mAh g^(-1)at the current density of 50 mA g^(-1),and 138.6 mAh g^(-1)after 500 cycles at the current density of 0.5 A g^(-1).The underlying mechanism toward excellent electrochemical performance are revealed by comprehensive theoretical simulations.This work proves that MBene is a competitive candidate as the next generation anode of sodium ion batteries. 展开更多
关键词 MBene MAB phase Metal boride MoB Microwave-assisted hydrothermal sodium-ion batteries
原文传递
Polycarbonyl conjugated porous polyimide as anode materials for high performance sodium-ion batteries
13
作者 Liangju Zhao Shiyu Qin +7 位作者 Fei Wu Limin Zhu Qing Han Lingling Xie Xuejing Qiu Hongliang Wei Lanhua Yi Xiaoyu Cao 《Chinese Chemical Letters》 2025年第8期498-504,共7页
Conjugated microporous polymers(CMPs)have attracted considerable attention as potential organic anode materials for sodium-ion batteries(SIBs)due to their flexible chemical structure,high porosity,environmental friend... Conjugated microporous polymers(CMPs)have attracted considerable attention as potential organic anode materials for sodium-ion batteries(SIBs)due to their flexible chemical structure,high porosity,environmental friendliness,and cost effectiveness.However,the inherent shortcomings of organic electrodes,such as low conductivity,high solubility in electrolyte,narrow material utilization,etc.,limit their further development.In this work,we successfully prepared a novel porous polyimide PPD containing multicarbonyl active centers via the polycondensation of pyromellitic dianhydride(PMDA)and2,6-diaminoanthraquinone(DAAQ).The stable conjugated structure and multiple redox centers give the polymer high reversible specific capacity(244.6 m Ah/g after 100 cycles at 100 m A/g),ultra-long cycle stability(100.7 m Ah/g after 2000 cycles at 1.0 A/g),and predominant rate capability.Meanwhile,the sodium storage mechanism of the electrode materials during the charging and discharging process is investigated by ex-situ XPS/FTIR analysis.Due to the exceptional electrochemical properties and simple synthesis method,this work may shed light on the preparation of polyimide-based anodes for high specific capacity and rate capability secondary batteries. 展开更多
关键词 sodium-ion batteries Porous polyimide Polycarbonyl Organic materials Anodes
原文传递
Hydrogen-bond enhanced urea-glycerol eutectic electrolyte to boost low-cost and long-lifespan aqueous sodium-ion batteries
14
作者 Menglu Lu Tianqi Yang +6 位作者 Wenkui Zhang Yang Xia Xinping He Xinhui Xia Yongping Gan Hui Huang Jun Zhang 《Journal of Energy Chemistry》 2025年第5期462-471,共10页
Aqueous sodium-ion batteries(ASIBs)have garnered significant attention as promising candidates for large-scale energy storage applications.This interest is primarily due to their abundant resource availability,environ... Aqueous sodium-ion batteries(ASIBs)have garnered significant attention as promising candidates for large-scale energy storage applications.This interest is primarily due to their abundant resource availability,environmental friendliness,cost-effectiveness,and high safety.However,their electrochemical performance is limited by the thermodynamic properties of water molecules,resulting in inadequate cycling stability and insufficient specific energy density.To address these challenges,this study developed a hydrogen-bond enhanced urea-glycerol eutectic electrolyte(UGE)to expand the electrochemical stability window(ESW)of the electrolyte and suppress corresponding side reactions.The eutectic component disrupts the original hydrogen bonding network in water,creating a new,enhanced network that reduces the activity of free water and forms a uniform,dense passivation layer on the anode.As a result,the optimized composition of UGE exhibits a broad ESW of up to 3 V(-1.44 to 1.6 V vs.Ag/AgCl).The Prussian blue(PB)/UGE/NaTi_(2)(PO_(4))_(3)@C full cell exhibits an exceptionally long lifespan of 10,000 cycles at 10 C.This study introduces a low-cost,ultra-long-life ASIB system,utilizing a green and economical eutectic electrolyte,which expands the use of eutectic electrolytes in aqueous batteries and opens a new research horizon for constructing efficient electrochemical energy storage and conversion. 展开更多
关键词 HYDROGEN-BOND UREA GLYCEROL Eutectic electrolyte Aqueous sodium-ion battery
在线阅读 下载PDF
Transformative Catalytic Carbon Conversion Enabling Superior Graphitization and Nanopore Engineering in Hard Carbon Anodes for Sodium-Ion Batteries
15
作者 Guilai Zhang Hong Gao +14 位作者 Dingyi Zhang Jun Xiao Limeng Sun Jiayi Li Congcong Li Yiwen Sun Xinyao Yuan Peng Huang Yi Xu Xin Guo Yufei Zhao Yong Wang Yao Xiao Guoxiu Wang Hao Liu 《Carbon Energy》 2025年第6期37-46,共10页
Hard carbons are promising anode materials for sodium-ion batteries(SIBs),but they face challenges in balancing rate capability,specific capacity,and initial Coulombic efficiency(ICE).Direct pyrolysis of the precursor... Hard carbons are promising anode materials for sodium-ion batteries(SIBs),but they face challenges in balancing rate capability,specific capacity,and initial Coulombic efficiency(ICE).Direct pyrolysis of the precursor often fails to create a suitable structure for sodium-ion storage.Molecular-level control of graphitization with open channels for Na^(+)ions is crucial for high-performance hard carbon,whereas closed pores play a key role in improving the low-voltage(<0.1 V)plateau capacity of hard carbon anodes for SIBs.However,creation of these closed pores presents significant challenges.This work proposes a zinc gluconate-assisted catalytic carbonization strategy to regulate graphitization and create numerous nanopores simultaneously.As the temperature increases,trace amounts of zinc remain as single atoms in the hard carbon,featuring a uniform coordination structure.This mitigates the risk of electrochemically irreversible sites and enhances sodium-ion transport rates.The resulting hard carbon shows an excellent reversible capacity of 348.5 mAh g^(-1) at 30 mA g^(-1) and a high ICE of 92.84%.Furthermore,a sodium storage mechanism involving“adsorption-intercalation-pore filling”is elucidated,providing insights into the pore structure and dynamic pore-filling process. 展开更多
关键词 catalytic carbonization GRAPHITIZATION hard carbon NANOPORES sodium-ion batteries
在线阅读 下载PDF
Rational modulation of fluorophosphate cathode by anionic groups to reduce the polarization behavior for fast-charging sodium-ion batteries
16
作者 Xinyuan Wang Fan Zhang +5 位作者 Xingyu Zhou Qian Wang Changyu Liu Yangyang Liu Hui Wang Xiaojie Liu 《Journal of Energy Chemistry》 2025年第1期509-521,共13页
Na_(3)V_(2)(PO_(4))_(2)O_(2)F (VP) is recognized as a promising cathode material for sodium-ion batteries due to its stable structural framework and high specific capacity.Density functional theory (DFT) and finite el... Na_(3)V_(2)(PO_(4))_(2)O_(2)F (VP) is recognized as a promising cathode material for sodium-ion batteries due to its stable structural framework and high specific capacity.Density functional theory (DFT) and finite element simulations show that incorporating SO_(4)^(2-)into VP decreases its band gap,lowers the migration energy barrier,and ensures a uniform Na+concentration gradient and stress distribution during charge and discharge cycles.Consequently,the average Na+diffusion coefficient of Na_(3)V_(2)(PO_(4))_(1.95)(SO_(4))_(0.05)O_(2)F(VPS-1) is roughly double that of VP,leading to enhanced rate capability (80 C,75.5 mAh g^(-1)) and cycling stability (111.0 mAh g^(-1)capacity after 1000 cycles at 10 C current density) for VPS-1.VPS-1 exhibits outstanding fast-charging capabilities,achieving an 80%state of charge in just 8.1 min.The assembled VPS-1//SbSn/NPC full cell demonstrated stable cycling over 200 cycles at a high 5 C current,maintaining an average coulombic efficiency of 95.35%. 展开更多
关键词 Anionic group modulation Polarization behavior Fast-charging sodium-ion battery Fluorophosphate Cathode
在线阅读 下载PDF
Isovalent doping of tin in sodium trititanate for enhanced sodium-ion battery performance
17
作者 Xin Jin Fujie Li +5 位作者 Xuguang Zhang Guangrong Zeng Xuehua Liu Bin Cai Chao Wang Xiu Song Zhao 《Journal of Energy Chemistry》 2025年第4期324-332,共9页
Layered sodium trititanate(Na_(2)Ti_(3)O_(7),NTO)is a promising anode material for sodium-ion batteries(NIBs)for large-scale energy storage applications because of its relatively low charge potential and low cost.Howe... Layered sodium trititanate(Na_(2)Ti_(3)O_(7),NTO)is a promising anode material for sodium-ion batteries(NIBs)for large-scale energy storage applications because of its relatively low charge potential and low cost.However,NTO suffers from unsatisfactory structural stability against cycling and poor electron conductivity.Herein,an isovalent doping strategy using Sn^(4+)to partially replace Ti^(4+)is demonstrated for improving the cycling stability and rate capability of NTO.The isovalent doping of Sn^(4+)does not alter the valence state of Ti^(4+),thus maintaining the lattice integrality and structural stability.Moreover,the Sn^(4+)dopant creates more Na^(+)-preferable travel channels and expands the interlayer spacing,thus increasing Na^(+)diffusivity.As a result,a Sn^(4+)-doped Na_(2)Ti_(3)O_7(NSTO)electrode exhibits a reversible Na^(+)storage specific capacity of 176 mA h g^(-1)at 0.1C and an ultra-long cycling life with 80.2%capacity retention after5000 cycles at 1C,far outperforming the undoped and aliovalent-doping NTO electrodes reported in the literature.In addition,the NSTO electrode delivers a rate capability of 102 mA h g^(-1)at 5C,higher than that of the NTO electrode(62 mA h g^(-1)).In situ X-ray diffraction characterization results reveal that Na^(+)storage in NSTO undergoes a partial solid-solution reaction mechanism,which is completely different from the two-phase transition mechanism of NTO.Density functional theory calculation results demonstrate that Sn^(4+)doping strengthens the Ti-O bond,contributing to structural stability.This work provides a robust approach to significantly improving the electrochemical performance of NTO-based anode materials for developing long-life NIBs. 展开更多
关键词 sodium-ion battery Sodium trititanate Isovalent doping Cycling stability Rate capability
在线阅读 下载PDF
Mechanisms and Mitigation Strategies of Gas Generation in Sodium-Ion Batteries
18
作者 Xingyan Li Xi Chen +13 位作者 Meng Li Haoran Wei Xuming Yang Shenghua Ye Liewu Li Jing Chen Xiangzhong Ren Xiaoping Ouyang Jianhong Liu Xiangtong Meng Jieshan Qiu Biwei Xiao Qianling Zhang Jiangtao Hu 《Nano-Micro Letters》 2025年第8期17-48,共32页
The transition to renewable energy sources has elevated the importance of SIBs(SIBs)as cost-effective alternatives to lithium-ion batteries(LIBs)for large-scale energy storage.This review examines the mechanisms of ga... The transition to renewable energy sources has elevated the importance of SIBs(SIBs)as cost-effective alternatives to lithium-ion batteries(LIBs)for large-scale energy storage.This review examines the mechanisms of gas generation in SIBs,identifying sources from cathode materials,anode materials,and electrolytes,which pose safety risks like swelling,leakage,and explosions.Gases such as CO_(2),H_(2),and O_(2) primarily arise from the instability of cathode materials,side reactions between electrode and electrolyte,and electrolyte decomposition under high temperatures or voltages.Enhanced mitigation strategies,encompassing electrolyte design,buffer layer construction,and electrode material optimization,are deliberated upon.Accordingly,subsequent research endeavors should prioritize long-term high-precision gas detection to bolster the safety and performance of SIBs,thereby fortifying their commercial viability and furnishing dependable solutions for large-scale energy storage and electric vehicles. 展开更多
关键词 sodium-ion batteries Gas evolution mechanism Inhibition strategies of gas generation High-performance sodium-ion battery roadmap
在线阅读 下载PDF
Thiophene-S doping assisted constructing high-performance pitch-based hard carbon anode for sodium-ion batteries
19
作者 Dong Sun Lu Zhao +4 位作者 Yin Yang Changbo Lu Chunming Xu Zhihua Xiao Xinlong Ma 《Materials Reports(Energy)》 2025年第2期58-67,I0002,共11页
Hard carbon has emerged as a promising anode material for sodium-ion batteries(SIBs)due to its exceptional chemical stability and abundant resources.However,its application in energy storage is limited by the poor fas... Hard carbon has emerged as a promising anode material for sodium-ion batteries(SIBs)due to its exceptional chemical stability and abundant resources.However,its application in energy storage is limited by the poor fastcharging performance caused by the slow Nat reaction kinetics.Herein,thiophene-S doped oxidized pitch(SOP-600)with outstanding fast-charging performance has been fabricated via a facile ball milling and carbonization procedure.Benefiting from the high thiophene-S doping content,the optimized SOP samples(SOP-600)exhibit plentiful active sites and a rich micro-mesoporous structure with rapid ion transport channels,significantly enhancing the Nat reaction kinetics and improving the fast-charging performance.When employed as SIBs anode,SOP-600 delivers an impressive specific capacity of 690.3 mAh g^(-1)at 0.05 A g^(-1).In addition,it maintains a significant reversible capacity of 373.5 mAh g^(-1)at 7 A g^(-1)with a capacity retention rate of 54.1%,demonstrating excellent fast-charging performance.Moreover,SOP-600 anode exhibits a remarkable cycling capacity of 490.7 mAh g^(-1)under 1 A g^(-1),with 92.5%capacity retention after 1000 cycles,highlighting its robust structural stability.Furthermore,sodium ion hybrid capacitors(SICs)assembled with SOP-600 anode and activated carbon cathode achieve a high reversible capacity of 53.5 mAh g^(-1)at 1 A g^(-1).This work provides theoretical insights into how thiophene-S doping enhances the fast-charging performance of hard carbon in SIBs. 展开更多
关键词 Thiophene-S doping Micro-mesopores structure Reaction kinetics Fast-charging anode sodium-ion batteries
在线阅读 下载PDF
Comprehensive Understanding of Closed Pores in Hard Carbon Anode for High-Energy Sodium-Ion Batteries
20
作者 Siyang Gan Yujie Huang +9 位作者 Ningyun Hong Yinghao Zhang Bo Xiong Zhi Zheng Zidong He Shengrui Gao Wentao Deng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 2025年第12期679-731,共53页
Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of ... Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of HC poses significant challenges in elucidating the structure-performance relationship,which has led to persistent misinterpretations regarding the intrinsic characteristics of closed pores.An irrational construction methodology of closed pores inevitably results in diminished plateau capacity,which severely restricts the practical application of HC in high-energy-density scenarios.This review provides a systematic exposition of the conceptual framework and origination mechanisms of closed pores,offering critical insights into their structural characteristics and formation pathways.Subsequently,by correlating lattice parameters with defect configurations,the structure-performance relationships governing desolvation kinetics and sodium storage behavior are rigorously established.Furthermore,pioneering advancements in structural engineering are critically synthesized to establish fundamental design principles for the rational modulation of closed pores in HC.It is imperative to emphasize that adopting a molecular-level perspective,coupled with a synergistic kinetic/thermodynamic approach,is critical for understanding and controlling the transformation process from open pores to closed pores.These innovative perspectives are strategically designed to accelerate the commercialization of HC,thereby catalyzing the sustainable and high-efficiency development of SIBs. 展开更多
关键词 Hard carbon Closed pores ANODE sodium-ion batteries High energy density
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部