期刊文献+
共找到2,218篇文章
< 1 2 111 >
每页显示 20 50 100
Proton exchange membrane-based electrocatalytic systems for hydrogen production 被引量:1
1
作者 Yangyang Zhou Hongjing Zhong +6 位作者 Shanhu Chen Guobin Wen Liang Shen Yanyong Wang Ru Chen Li Tao Shuangyin Wang 《Carbon Energy》 2025年第1期292-311,共20页
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi... Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs. 展开更多
关键词 ELECTROLYSIS hydrogen production proton exchange membrane
在线阅读 下载PDF
Sodium regulated WO_(6)octahedron engineering interfacial water structure to boost hydrogen evolution reaction
2
作者 Xiaolei Li Chen Song +5 位作者 Shuyuan Yang Qisen Jia Xuejing Cui Guangbo Liu Xin Zhou Luhua Jiang 《Journal of Energy Chemistry》 2025年第6期470-481,I0011,共13页
Understanding the role of cations within the catalysts in the interfacial water behavior at the electrolyte/catalyst interface is of pivotal importance for designing advanced catalysts toward hydrogen evolution reacti... Understanding the role of cations within the catalysts in the interfacial water behavior at the electrolyte/catalyst interface is of pivotal importance for designing advanced catalysts toward hydrogen evolution reaction(HER),which remains obscure and requires deep probing.Herein,we demonstrate the first investigation of interfacial water behavior on the surface of a series of sodium tungsten bronzes(Na_(x)WO_(3),0_(x)WO_(3)/electrolyte interface.Our integrated studies indicate that the Na ions significantly enrich the electronic state of WO_(6)octahedrons in Na_(x)WO_(3),which leads to the regulated electronic and atomic structures,endowing Na_(x)WO_(3)with disordered interfacial water network containing more isolated H_(3)O^(+)and subsequently moderate H^(*)adsorption to speed the Volmer step at the Na_(x)WO_(3)surface,thus boosting the HER.Consequently,the intrinsic HER activities achieved on those Na_(x)WO_(3)are tens of times higher than those on WO_(3).Particularly,it is found that Na concentration x=0.69 endows Na_(x)WO_(3)with the highest intrinsic HER activity,and the resultant Na_(0.69)WO_(3)with a unique porous octahedral structure exhibits a low overpotential of only 64 mV at current density of 10 mA cm^(-2)in acidic electrolyte.This study provides the first insight into the cation-dependent interfacial water behavior induced by the cations within the catalyst and establishes the interfacial water-activity relationship of HER,thus allowing for the design of a more advanced catalyst with efficient interfacial structu res towa rds HER. 展开更多
关键词 sodium tungsten bronze sodium-ion hydrogen evolution Interfacial water Structure-activity relationship
在线阅读 下载PDF
Correction to High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation
3
《Energy & Environmental Materials》 2025年第4期296-296,共1页
P.Li,J.Zhong,Y.Fu,Z.Du,L.Jiang,Y.Han,J.Luxa,B.Wu,Z.Sofer,Q.Wei,W.Yang.High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen ... P.Li,J.Zhong,Y.Fu,Z.Du,L.Jiang,Y.Han,J.Luxa,B.Wu,Z.Sofer,Q.Wei,W.Yang.High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation.Energy Environ.Mater.2024,7,e12716. 展开更多
关键词 enhanced hydrogen oxidation nitrogen configuration optimization anion exchange membrane fuel cells high performance anion exchange membrane fuel cells graphene coated nickel
在线阅读 下载PDF
Pulsed dynamic electrolysis enhanced PEMWE hydrogen production:Revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape 被引量:1
4
作者 Xuewei Zhang Wei Zhou +13 位作者 Yuming Huang Liang Xie Tonghui Li Huimin Kang Lijie Wang Yang Yu Yani Ding Junfeng Li Jiaxiang Chen Miaoting Sun Shuo Cheng Xiaoxiao Meng Jihui Gao Guangbo Zhao 《Journal of Energy Chemistry》 2025年第1期201-214,共14页
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for... The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors. 展开更多
关键词 Water electrolysis hydrogen production Pulsed dynamic electrolysis Proton exchange membrane water electrolysis Mass transport
在线阅读 下载PDF
Resuscitation from Prolonged Ventricular Fibrillation by Epinephrine Combined with Sodium-Hydrogen Exchanger Isoform-1 Inhibitor Cariporide
5
作者 易忠 《South China Journal of Cardiology》 CAS 2002年第1期30-34,共5页
Objective To test the resuscitative effects from prolonged ventricular fibrillation by epinephrine combined with sodium hydrogen exchanger isoform 1 inhibitor Cariporide. Methods 16 rats were received a 3 mg/kg bolu... Objective To test the resuscitative effects from prolonged ventricular fibrillation by epinephrine combined with sodium hydrogen exchanger isoform 1 inhibitor Cariporide. Methods 16 rats were received a 3 mg/kg bolus of Cariporide or the same volume of 0.9%NaCl solution (control) 15 seconds before completion 12 minutes untreated VF. Chest compression (CC) was started for a total of 8 minutes. Adjusted the depth of compressor so that the aortic diastolic pressure to 25~28 mmHg during the 2nd minute of CC. Fix the depth of the piston and this depth was used throughout the remaining 6 minutes of CC. 10 seconds before starting the 3rd minute of chest compression, injected epinephrine (30 μg/kg). Recorded the time at which restoration of spontaneous circulation (ROSC) occurred in Cariporide treated rats. Electrical defibrillation was timed in control group to match the time of spontaneous defibrillation in Cariporide treated rats. To the rats, which cant be defibrillated spontaneously, received chest compression and rescues electrical shocks. Results compared with control group, with the same CC depth, Cariporide treated rats received the higher and longer lasting coronary perfusion pressure (P< 0.05), higher resuscitative rate (P< 0.05), less post resuscitative ventricular ectopic activities (P< 0.001), better hemodynamic effects and longer survival time (P< 0.05). Conclusion Epinephrine combined with sodium hydrogen exchanger isoform 1 inhibitor Cariporide may represent a novel and remarkably effective intervention for resuscitation from prolonged VF. 展开更多
关键词 Cardiopulmonary resuscitation Prolonged ventricular fibrillation Epinephrine sodium hydrogen exchanger isoform 1 inhibitor Coronary perfusion pressure
暂未订购
Exploring properties of hyperbranched polymers in anion exchange membranes for fuel cells and its potential integration for water electrolysis:A review
6
作者 Tamilazhagan Palanivel Mohamed Mamlouk +1 位作者 Bruno G.Pollet Rajangam Vinodh 《Journal of Energy Chemistry》 2025年第3期670-702,共33页
Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in... Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in efficiently transporting hydroxide ions(OH^(-))and minimizing fuel crossover,thus enhancing overall efficiency.While conventional AEMs with linear,side-chain,and block polymer architectures show promise through functionalization,their long-term performance remains a concern.To address this,hyperbranched polymers offer a promising alternative due to their three-dimensional structure,higher terminal functionality,and ease of functionalization.This unique architecture provides interconnected ion transport pathways,fractional free volume,and enhanced long-term stability in alkaline environments.Recent studies have achieved conductivities as high as 304.5 mS cm^(-1),attributed to their improved fractional free volume and microphase separation in hyperbranched AEMs.This review explores the chemical,mechanical,and ionic properties of hyperbranched AEMs in AEMFCs and assesses their potential for application in AEMWEs.Strategies such as blending and structural functionalisation have significantly improved the properties by promoting microphase separation and increasing the density of cationic groups on the polymer surface.The review provides essential insights for future research,highlighting the challenges and opportunities in developing high-performance hyperbranched AEMs to advance hydrogen energy infrastructure. 展开更多
关键词 hydrogen Hyperbranched anion exchange membrane Anion exchange membrane fuel cell Alkaline stability Micropha seseparation Fractional free volume Anion exchange membrane water electrolysers
在线阅读 下载PDF
An electron-transfer-tuning strategy at the graphene/metal interface for improving acidic water electrolysis in proton exchange membrane electrolyzers
7
作者 Yue Xu Shuaidong Li +9 位作者 Yingjian He Fumiya Shiokawa Samuel Jeong Aimi Asilah Haji Tajuddin Zeyu Xi Yoshikazu Ito Jingzi Zhang Zeyun Cai Xi Lin Kailong Hu 《Journal of Energy Chemistry》 2025年第4期344-352,共9页
Graphene encapsulation has been shown to be an effective technique for improving the corrosion resistance of non-noble metal catalysts for the acidic water electrolysis.The key challenge lies in enhancing the electroc... Graphene encapsulation has been shown to be an effective technique for improving the corrosion resistance of non-noble metal catalysts for the acidic water electrolysis.The key challenge lies in enhancing the electrocatalytic activity of graphene-encapsulated metals while maintaining their durability in acidic media.Herein,an electron-transfer-tuning strategy is investigated at the graphene/NiMo interface,aiming to improve the hydrogen evolution reaction(HER)performance of graphene-encapsulated NiMo catalysts.The doping of Ti,a low electronegativity element,into NiMo substrate was confirmed to increase electron transfer from the metal core toward the graphene.The electron-rich state on graphene facilitates the adsorption of positively charged protons on graphene,thereby enabling a Pt/C-comparable performance in 0.5 M H_(2)SO_(4),with only a 3.8%degradation in performance over a 120-h continuous test.The proton exchange membrane(PEM)water electrolyzer assembled by the N-doped grapheneencapsulated Ti-doped NiMo exhibits a smaller cell voltage to achieve a current density of 2.0 A cm^(-2),in comparison to the Pt/C based counterpart.This study proposes a novel electron-transfer-tuning strategy to improve the HER activity of graphene-encapsulated non-noble metal catalysts without sacrificing durability in acidic electrolytes. 展开更多
关键词 hydrogen evolution Acidic media Graphene encapsulation INTERFACE Proton exchange membrane
在线阅读 下载PDF
Using vaporized hydrogen peroxide for anhydrous disinfection of gastrointestinal endoscopes
8
作者 Can Zhao Li-Hong Qi +3 位作者 Long-Song Li Ying-Ying Wang Ting Liang Ning-Li Chai 《World Journal of Gastroenterology》 2025年第14期106-117,共12页
BACKGROUND Current disinfection methods for gastrointestinal endoscopes consume a significant amount of water resources and produce a large volume of waste.AIM To achieve the objectives of efficiency,speed,and cost-ef... BACKGROUND Current disinfection methods for gastrointestinal endoscopes consume a significant amount of water resources and produce a large volume of waste.AIM To achieve the objectives of efficiency,speed,and cost-effectiveness,this study utilized vaporized hydrogen peroxide(VHP)generated from sodium percarbonate granules to conduct an anhydrous disinfection test on gastrointestinal endoscopes.METHODS The experimental device rapidly converts sodium percarbonate granules into VHP,and performs disinfection experiments on gastrointestinal endoscope models,disposable endoscopes,and various types of reusable gastrointestinal endoscopes.Variables such as the intraluminal flow rate(FR),relative humidity(RH),exposure dosage,and organic burden are used to explore the factors influencing the disinfection of long and narrow lumens with VHP.RESULTS The device generates a certain concentration of VHP that can achieve high-level disinfection of endoscope models within 30 minutes.RH,exposure dosage,and organic burden significantly affect the disinfection efficacy of VHP,whereas the intraluminal FR does not significantly impact disinfection efficacy.All ten artificially contaminated disposable endoscopes achieved satisfactory disinfection results.Furthermore,when this device was used to treat various types of reusable endoscopes,the disinfection and sterilization effects were not significantly different from those of automatic endoscope disinfection machines(using peracetic acid disinfectant solution)(P>0.05),and the economic cost of disinfectant required per endoscope was lower(1.5 China Yuan),with a shorter disinfection time(30 minutes).CONCLUSION The methods and results of this study provide a basis for further research on the use of VHP for the disinfection of gastrointestinal endoscopes,as well as for the development of anhydrous disinfection technology for gastrointestinal endoscopes. 展开更多
关键词 Gastrointestinal endoscope Vaporized hydrogen peroxide sodium percarbonate granules Bacillus subtilis Anhydrous disinfection
暂未订购
Modulating the Local Charge Distribution of Single-Atomic Ru Sites for an Efficient Hydrogen Evolution Reaction
9
作者 Youyu Long Lingfeng Yang +7 位作者 Min Xi Yifan Zhao Hua Zhang Tingting Liu Anran Chen Xuguang An Guangzhi Hu Zitao Ni 《Carbon Energy》 2025年第5期190-201,共12页
Ruthenium(Ru)-based electrocatalysts show great promise as substitutes for platinum(Pt)for the alkaline hydrogen evolution reaction(HER)because of their efficient water dissociation capabilities.Nevertheless,the stron... Ruthenium(Ru)-based electrocatalysts show great promise as substitutes for platinum(Pt)for the alkaline hydrogen evolution reaction(HER)because of their efficient water dissociation capabilities.Nevertheless,the strong adsorption of Ru-OH intermediates(Ru-OHad)blocks the active site,leading to unsatisfactory HER performance.In this study,we report a universal ligand-exchange strategy for synthesizing a MOF-on-MOF-derived FeP-CoP heterostructure-anchored Ru single-atom site catalyst(Ru-FeP-CoP/NPC).The obtained catalyst shows a low overpotential(28 mV at 10 mA cm^(-2))and a high mass activity(9.29 A mg^(-1) at 100 mV),surpassing the performance of commercial Pt/C by a factor of 46.Theoretical studies show that regulating the local charge distribution of Ru single-atom sites could alleviate surrounding OH-blockages,accelerating water dissociation and facilitating hydrogen adsorption/desorption,thus enhancing HER activity.This work aims to inspire further design of highly active and durable electrocatalysts with tailored electronic properties for high-purity hydrogen production. 展开更多
关键词 heterostructure catalyst hydrogen evolution reaction ligand exchange metal-organic frameworks
在线阅读 下载PDF
Designing durable and efficient Co-based catalysts for acidic oxygen evolution reaction in proton exchange membrane water electrolyzers
10
作者 Chuansheng He Jia Wang +3 位作者 Ren He Linlin Yang Yizhong Lu Andreu Cabot 《Journal of Energy Chemistry》 2025年第10期378-402,共25页
Proton exchange membrane water electrolyzers(PEMWEs)are pivotal for efficient hydrogen production due to their high energy efficiency and ability to operate at high current densities,making them ideally suited for int... Proton exchange membrane water electrolyzers(PEMWEs)are pivotal for efficient hydrogen production due to their high energy efficiency and ability to operate at high current densities,making them ideally suited for integration with renewable energy sources.Cobalt(Co)-based nanomaterials,characterized by diverse oxidation states,tunable electronic spin states,and hybrid orbitals,have emerged as promising non-noble metal alternatives to platinum group catalysts for accelerating the anodic oxygen evolution reaction(OER).Based on their inherent properties,this review provides a comprehensive overview of the latest developments in Co-based nanomaterials for acidic OER.The review begins by introducing the operational principles of PEMWEs,the underlying catalytic mechanisms,and the critical design considerations for OER catalysts.It then explores strategies to enhance the activity and stability of Co-based catalysts for acidic OER in PEMWEs,including the incorporation of corrosion-resistant metals or dispersion on acid-resistant supports to increase active surface area and stability;utilization of geometric structural engineering to improve structural integrity and active site efficiency;the optimization of reaction mechanisms to fine-tune catalytic pathways for enhanced stability and performance.The performance degradation mechanisms and metal leaching analysis for Co-based catalysts in PEMWE are also clarified.Finally,this review not only outlines the key challenges associated with Co-based catalysts for acidic OER but also proposes potential strategies to overcome these limitations,offering a roadmap for future advancements and practical implementation of PEMWE technology. 展开更多
关键词 Proton exchange membrane waterelectrolyzer COBALT Oxygen evolution reaction hydrogen Water electrolysis
在线阅读 下载PDF
Regulating Reconstruction-Engineered Active Sites of CoP Electrocatalyst by Br Ions During the Oxygen and Hydrogen Evolution Reaction
11
作者 Jing Yao Yuanyuan Zhang +6 位作者 Feng Gao Qi Jin Lirong Zhang Lingling Xu Mingyi Zhang Hong Gao Peng Yu 《Energy & Environmental Materials》 2025年第4期198-206,共9页
An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-... An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-doped CoP electrocatalysts in the alkaline hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The introduction of Br modulates the electronic structure of the Co site,endowing Br-CoP with a more metallic character.In addition,P ion leaching promotes the in situ reconstruction of Br-CoOOH,which is the real active site for the OER reaction.Meanwhile,the HER situation is different.On the basis of P ion leaching,the leaching of Br ions promotes the formation of CoP-Co(OH)_(2) active species.In addition,Br doping enhances the adsorption of^(*)H,showing excellent H adsorption free energy,thereby greatly improving the HER activity.Simultaneously,it also enhances the adsorption of OOH^(*),effectively facilitating the occurrence of OER reactions.Br-CoP only needs 261 and 76 mV overpotential to drive the current density of 20 mA cm^(-2) and 10 mA^(-2),which can be maintained unchanged for 100 h.This study provides new insights into anion doping strategies and catalyst reconstruction mechanisms. 展开更多
关键词 anion exchange mechanism Br-CoP hydrogen evolution reaction oxygen evolution reaction surface reconstruction
在线阅读 下载PDF
Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells
12
作者 Yuetong Gao Tong Mu +2 位作者 Xinyue Hu Yang Pang Chengji Zhao 《Chinese Chemical Letters》 2025年第6期489-494,共6页
Aryl-ether bonds are facile to attack by oxidizing radicals,thus stimulating the exploitation of ether-free polymers as proton exchange membranes(PEMs)for the long-lasting operation of fuel cells.In this study,a novel... Aryl-ether bonds are facile to attack by oxidizing radicals,thus stimulating the exploitation of ether-free polymers as proton exchange membranes(PEMs)for the long-lasting operation of fuel cells.In this study,a novel class of PEMs derived from all-carbon fluorinated backbone polymers containing sulfide-linked alkyl sulfonic acid side chains have been developed through a straightforward and effective synthetic procedure.The sulfide-linked alkyl sulfonate groups were tethered to the poly(triphenylene pentafluorophenyl)backbone through a quantified and site-specific para-fluoro-thiol click reaction.Owing to the existence of obvious phase separation morphology between hydrophobic main chain and hydrophilic sulfonate groups in the side chains,resulting PEMs demonstrated favorable proton conductivity of 142.5m S/cm at 80℃,while maintaining excellent dimensional stability with an in-plane swelling ratio of<17%as well as a through-plane swelling ratio of<25%.They also exhibit elevated thermal decomposition temperatures(Td5%exceeding 300℃)alongside high tensile strength(>50 MPa).Furthermore,the ether-free full-carbon fluorinated main chain and the-S-group in the side chain,which serves as an effective freeradical scavenger,providing good chemical stability during Fenton’s test.The PEMs achieved a maximum power density of 407 m W/cm^(2)in a single H^(2)/air fuel cell,and an open-circuit voltage decline rate of 0.275 m V/h in a durability test at 30%RH and 80℃.Concurrently,the hydrogen crossover current density is only 1/3 of that of Nafion 212.These findings reveal that the resulted PEMs display considerable antioxidative properties along with commendable performance,with prospective applications in proton exchange membrane fuel cells. 展开更多
关键词 All-carbon backbone Proton exchange membrane Fuel cells Facile synthesis Low hydrogen permeability
原文传递
Novel open-framework chalcogenide photocatalysts:Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution
13
作者 Haiyan Yin Abdusalam Ablez +4 位作者 Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang 《Chinese Journal of Structural Chemistry》 2025年第4期44-55,共12页
Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as high... Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as highly efficient photocatalysts for hydrogen evolution.However,their applications in photocatalytic hydrogen evolution(PHE)are infrequently documented and the corresponding photocatalytic mechanism has not yet been explored.Herein,we excavated a novel NOS photocatalyst of(Me_(2)NH_(2))_(6)In_(10)S_(18)(MIS)with a three-dimensional(3D)structure,and successfully incorporated divalent Co(Ⅱ)and metal Co(0)into its cavities via the convenient cation exchange-assisted approach to regulate the critical steps of photocatalytic reactions.As the introduced Co(0)allows for more efficient light utilization and adroitly surficial hydrogen desorption,and meanwhile acts as the‘electron pump’for rapid charge transfer,Co(0)-modified MIS delivers a surprising PHE activity in the initial stage of photocatalysis.With the prolonging of illumination,metal Co(0)gradually escapes from MIS framework,resulting in the decline of PHE performance.By stark contrast,the incorporated Co(Ⅱ)can establish a strong interaction with MIS framework,and simultaneously capture photogenerated electrons from MIS to produce Co(0),which constructs a stable photocatalytic system as well as provides additional channels for spatially separating photogenerated carriers.Thus,Co(Ⅱ)-modified MIS exhibits a robust and highly stable PHE activity of~4944μmol/g/h during the long-term photocatalytic reactions,surpassing most of the previously reported In–S framework photocatalysts.This work represents a breakthrough in the study of PHE performance and mechanism of NOS-based photocatalysts,and sheds light on the design of vip confined NOS-based photocatalysts towards high-efficiency solar-to-chemical energy conversion. 展开更多
关键词 OPEN-FRAMEWORK Metal sulfide Ion exchange Cobalt cocatalyst Valence state Charge transfer Photocatalytic hydrogen evolution
原文传递
Lattice-matched metal/WN catalyst with highly oxygenophilic W sites for hydrogen production in seawater electrolyzer
14
作者 Shipeng Geng Liming Chen +2 位作者 Yinlong Wu Yi Wang Shuqin Song 《Journal of Energy Chemistry》 2025年第6期302-311,I0008,共11页
Designing efficient and durable hydrogen evolution reaction(HER)catalysts for seawater electrolysis is crucial for large-scale hydrogen production.Here,we introduce a theory-driven design of metal/WN electrocatalysts,... Designing efficient and durable hydrogen evolution reaction(HER)catalysts for seawater electrolysis is crucial for large-scale hydrogen production.Here,we introduce a theory-driven design of metal/WN electrocatalysts,with metal strongly coupled to lattice-matched WN.Theoretical calculations for Pt/WN reveal that W sites enhance H_(2)O adsorption/dissociation,optimizing Pt's H binding.The prepared Pt/WN@CP nanorods can catalyze HER with low overpotentials of 107 and 113 mV at 500 mA cm^(-2)in alkaline water/seawater,respectively,surpassing Pt/C.Extended calculations and experiments show that the optimized Ni/WN@CP-90 achieves an optimal ΔG_(H*)and overpotential of 219 mV at 500 mA cm^(-2)in alkaline seawater,demonstrating the versatility of the WN support to promote HER activity.Notably,the anion exchange membrane water electrolyzer(AEMWE)constructed by Pt/WN@CP or Ni/WN@CP-90 with NiFe-LDH@NF demonstrates outstanding hydrogen production activity with excellent Faraday efficiency(~100%)and durability(120 h),indicating the potential application of WN-supported catalysts for efficient and stable seawater electrolysis. 展开更多
关键词 Density functional theory WN support Seawater electrolysis hydrogen evolution reaction Anion exchange membrane water ELECTROLYZER
在线阅读 下载PDF
Efficient visible-light-driven hydrogen production with Ag-doped flower-like ZnIn_(2)S_(4) microspheres
15
作者 Man Yang Xiao-Qiang Zhan +7 位作者 De-Liu Ou Lin Wang Lu-Lu Zhao Hong-Li Yang Zi-Yi Liao Wei-You Yang Guo-Zhi Ma Hui-Lin Hou 《Rare Metals》 2025年第2期1024-1041,共18页
The zinc indium sulfide(ZnIn_(2)S_(4))semiconductors have garnered significant interest in photocatalysis due to their environmentally friendly characteristics,appropriate bandgap,and high absorption coefficient.Howev... The zinc indium sulfide(ZnIn_(2)S_(4))semiconductors have garnered significant interest in photocatalysis due to their environmentally friendly characteristics,appropriate bandgap,and high absorption coefficient.However,the exploration of advanced strategies to realize the effective and tailored doping still poses significant challenges in enhancing hydrogen evolution performance.In this work,a mild cation exchange strategy is reported to incorporate Ag cations into flower-like ZnIn_(2)S_(4) microspheres,enabling the selective replacement of Zn atoms by Ag.Remarkably,the as-fabricated Ag-ZnIn_(2)S_(4) exhibited exceptional photocatalytic hydrogen production performance,achieving a rate of 8098μmol·g^(−1)·h^(−1) under visible light irradiation.This is 4 times than that of pristine ZnIn_(2)S_(4)(2002μmol·g^(−1)·h^(−1)),and stands as the highest one among metal-doped-ZnIn_(2)S_(4) photocatalysts ever reported.Along with the theoretical calculations,it has been confirmed that the enhanced photocatalytic hydrogen generation behavior can primarily be attributed to the synergistic effect with improved light absorption,reduced adsorption energy,increased active sites and optimized charge carrier transfer,induced by the cation exchange with Ag in ZnIn_(2)S_(4).This work might provide some valuable insights on the design and development of highly efficient visible light driven photocatalysts for water splitting applications. 展开更多
关键词 ZnIn_(2)S_(4) Ag doping Cation exchange Photocatalytic hydrogen evolution
原文传递
Tailoring OH^(∗)adsorption strength on Ni/NbO_(x) for boosting alkaline hydrogen oxidation reaction via oxygen vacancy
16
作者 Guo Yang Kai Li +5 位作者 Hanshi Qu Jianbing Zhu Chunyu Ru Meiling Xiao Wei Xing Changpeng Liu 《Chinese Chemical Letters》 2025年第7期613-618,共6页
The development of efficient and robust non-precious metal electrocatalyst to drive the sluggish hydrogen oxidation reaction(HOR)is the key to the practical application of anion exchange membrane fuel cells(AEMFC),whi... The development of efficient and robust non-precious metal electrocatalyst to drive the sluggish hydrogen oxidation reaction(HOR)is the key to the practical application of anion exchange membrane fuel cells(AEMFC),which relies on the rational regulation of intermediates’binding strength.Herein,we reported a simple strategy to manipulate the adsorption energy of OH^(∗)on electrocatalyst surface via engineering Ni/NbO_(x) heterostructures with manageable oxygen vacancy(Ov).Theoretical calculations confirm that the electronic effect between Ni and NbO_(x) could weaken the hydrogen adsorption on Ni,and the interfacial oxygen vacancy tailor hydroxide binding energy(OHBE).The optimized HBE and OHBE contribute to reduce formation energy of water during the alkaline HOR process.Furthermore,in situ Raman spectroscopy monitor the dynamic process that OH^(∗)adsorbed on oxygen vacancy and react with adjacent H^(∗)adsorbed Ni,confirming the vital role of OH^(∗)for alkaline HOR process.As a result,the optimal Ni/NbO_(x) exhibits a remarkable intrinsic activity with a specific activity of 0.036mA/cm^(2),which is 4-fold than that of pristine Ni counterpart and surpasses most non-precious electrocatalysts ever reported. 展开更多
关键词 hydrogen oxidation reaction Anion exchange membrane fuel cells Non-precious metal catalyst Oxygen vacancy HETEROSTRUCTURE Hydroxyl binding energy
原文传递
Recent advances in anion exchange membranes
17
作者 Jiachen Gao Hailong Zhang +9 位作者 Xue Zhao Yafu Wang Houen Zhu Xiangyi Kong Yan Liang Ting Ou Rui Ren Yulan Gu Yanyong Su Jiangwei Zhang 《Chinese Journal of Structural Chemistry》 2025年第5期76-90,共15页
Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this p... Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this paper,the research status of AEM is reviewed,including its material design,preparation method,performance optimization and application in the fields of hydrogen production by electrolytic water,fuel cell and water treatment.In terms of material design,new polymer skeleton structures are emerging to regulate the stability of ion conduction channels and membranes by introducing specific functional groups or changing the molecular chain structure.The preparation methods have been gradually expanded from the traditional solution casting method to more advanced technologies,such as interfacial polymerization and electrostatic spinning,which effectively improve the microstructure and property uniformity of the film.Performance optimization focuses on improving ion conductivity,reducing membrane swelling rate and enhancing chemical stability,and a variety of modification strategies are developed and applied.Despite the achievements made so far,there are still some challenges,such as the lack of long-term stability in highly alkaline environments.Future research needs to further explore new material systems and preparation processes in order to promote the wide application and sustainable development of AEM technology in energy,environmental protection and other fields. 展开更多
关键词 Anion exchange membrane Water electrolysis for hydrogen production Material structure-activity relationship Recent research progress Material application perspective
原文传递
Exchange Reaction Characteristics of Anion Exchange Resin for Diclofenac Sodium
18
作者 吴静 杨丽 +3 位作者 刘宏飞 王超 曹国良 潘卫三 《Journal of Chinese Pharmaceutical Sciences》 CAS 2006年第4期228-232,共5页
Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the stron... Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the strong anion exchange resin (201 × 7) as the carrier. The effects of different forms (OH~ - and Cl~ - ) of the strong anion exchange resin, the particle size of the resin, and the reaction temperature on the exchange behavior were described. The exchange kinetic profiles were fitted. The related exc... 展开更多
关键词 diclofenac sodium anion exchange resin exchange kinetics exchange thermodynamics
在线阅读 下载PDF
Small proton exchange membrane fuel cell power station by using bio-hydrogen
19
作者 刘志祥 毛宗强 +1 位作者 王诚 任南琪 《电池》 CAS CSCD 北大核心 2006年第5期362-363,共2页
关键词 proton exchange membrane fuel cell BIO-hydrogen
在线阅读 下载PDF
Hydrogen generation from methanolysis of sodium borohydride over Co/Al_2O_3 catalyst 被引量:4
20
作者 Dongyan Xu Lin Zhao +1 位作者 Ping Dai Shengfu Ji 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期488-494,共7页
Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolys... Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature. 展开更多
关键词 hydrogen generation sodium borohydride METHANOLYSIS COBALT
在线阅读 下载PDF
上一页 1 2 111 下一页 到第
使用帮助 返回顶部