Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi...Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.展开更多
Understanding the role of cations within the catalysts in the interfacial water behavior at the electrolyte/catalyst interface is of pivotal importance for designing advanced catalysts toward hydrogen evolution reacti...Understanding the role of cations within the catalysts in the interfacial water behavior at the electrolyte/catalyst interface is of pivotal importance for designing advanced catalysts toward hydrogen evolution reaction(HER),which remains obscure and requires deep probing.Herein,we demonstrate the first investigation of interfacial water behavior on the surface of a series of sodium tungsten bronzes(Na_(x)WO_(3),0_(x)WO_(3)/electrolyte interface.Our integrated studies indicate that the Na ions significantly enrich the electronic state of WO_(6)octahedrons in Na_(x)WO_(3),which leads to the regulated electronic and atomic structures,endowing Na_(x)WO_(3)with disordered interfacial water network containing more isolated H_(3)O^(+)and subsequently moderate H^(*)adsorption to speed the Volmer step at the Na_(x)WO_(3)surface,thus boosting the HER.Consequently,the intrinsic HER activities achieved on those Na_(x)WO_(3)are tens of times higher than those on WO_(3).Particularly,it is found that Na concentration x=0.69 endows Na_(x)WO_(3)with the highest intrinsic HER activity,and the resultant Na_(0.69)WO_(3)with a unique porous octahedral structure exhibits a low overpotential of only 64 mV at current density of 10 mA cm^(-2)in acidic electrolyte.This study provides the first insight into the cation-dependent interfacial water behavior induced by the cations within the catalyst and establishes the interfacial water-activity relationship of HER,thus allowing for the design of a more advanced catalyst with efficient interfacial structu res towa rds HER.展开更多
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
Objective To test the resuscitative effects from prolonged ventricular fibrillation by epinephrine combined with sodium hydrogen exchanger isoform 1 inhibitor Cariporide. Methods 16 rats were received a 3 mg/kg bolu...Objective To test the resuscitative effects from prolonged ventricular fibrillation by epinephrine combined with sodium hydrogen exchanger isoform 1 inhibitor Cariporide. Methods 16 rats were received a 3 mg/kg bolus of Cariporide or the same volume of 0.9%NaCl solution (control) 15 seconds before completion 12 minutes untreated VF. Chest compression (CC) was started for a total of 8 minutes. Adjusted the depth of compressor so that the aortic diastolic pressure to 25~28 mmHg during the 2nd minute of CC. Fix the depth of the piston and this depth was used throughout the remaining 6 minutes of CC. 10 seconds before starting the 3rd minute of chest compression, injected epinephrine (30 μg/kg). Recorded the time at which restoration of spontaneous circulation (ROSC) occurred in Cariporide treated rats. Electrical defibrillation was timed in control group to match the time of spontaneous defibrillation in Cariporide treated rats. To the rats, which cant be defibrillated spontaneously, received chest compression and rescues electrical shocks. Results compared with control group, with the same CC depth, Cariporide treated rats received the higher and longer lasting coronary perfusion pressure (P< 0.05), higher resuscitative rate (P< 0.05), less post resuscitative ventricular ectopic activities (P< 0.001), better hemodynamic effects and longer survival time (P< 0.05). Conclusion Epinephrine combined with sodium hydrogen exchanger isoform 1 inhibitor Cariporide may represent a novel and remarkably effective intervention for resuscitation from prolonged VF.展开更多
Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in...Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in efficiently transporting hydroxide ions(OH^(-))and minimizing fuel crossover,thus enhancing overall efficiency.While conventional AEMs with linear,side-chain,and block polymer architectures show promise through functionalization,their long-term performance remains a concern.To address this,hyperbranched polymers offer a promising alternative due to their three-dimensional structure,higher terminal functionality,and ease of functionalization.This unique architecture provides interconnected ion transport pathways,fractional free volume,and enhanced long-term stability in alkaline environments.Recent studies have achieved conductivities as high as 304.5 mS cm^(-1),attributed to their improved fractional free volume and microphase separation in hyperbranched AEMs.This review explores the chemical,mechanical,and ionic properties of hyperbranched AEMs in AEMFCs and assesses their potential for application in AEMWEs.Strategies such as blending and structural functionalisation have significantly improved the properties by promoting microphase separation and increasing the density of cationic groups on the polymer surface.The review provides essential insights for future research,highlighting the challenges and opportunities in developing high-performance hyperbranched AEMs to advance hydrogen energy infrastructure.展开更多
Graphene encapsulation has been shown to be an effective technique for improving the corrosion resistance of non-noble metal catalysts for the acidic water electrolysis.The key challenge lies in enhancing the electroc...Graphene encapsulation has been shown to be an effective technique for improving the corrosion resistance of non-noble metal catalysts for the acidic water electrolysis.The key challenge lies in enhancing the electrocatalytic activity of graphene-encapsulated metals while maintaining their durability in acidic media.Herein,an electron-transfer-tuning strategy is investigated at the graphene/NiMo interface,aiming to improve the hydrogen evolution reaction(HER)performance of graphene-encapsulated NiMo catalysts.The doping of Ti,a low electronegativity element,into NiMo substrate was confirmed to increase electron transfer from the metal core toward the graphene.The electron-rich state on graphene facilitates the adsorption of positively charged protons on graphene,thereby enabling a Pt/C-comparable performance in 0.5 M H_(2)SO_(4),with only a 3.8%degradation in performance over a 120-h continuous test.The proton exchange membrane(PEM)water electrolyzer assembled by the N-doped grapheneencapsulated Ti-doped NiMo exhibits a smaller cell voltage to achieve a current density of 2.0 A cm^(-2),in comparison to the Pt/C based counterpart.This study proposes a novel electron-transfer-tuning strategy to improve the HER activity of graphene-encapsulated non-noble metal catalysts without sacrificing durability in acidic electrolytes.展开更多
BACKGROUND Current disinfection methods for gastrointestinal endoscopes consume a significant amount of water resources and produce a large volume of waste.AIM To achieve the objectives of efficiency,speed,and cost-ef...BACKGROUND Current disinfection methods for gastrointestinal endoscopes consume a significant amount of water resources and produce a large volume of waste.AIM To achieve the objectives of efficiency,speed,and cost-effectiveness,this study utilized vaporized hydrogen peroxide(VHP)generated from sodium percarbonate granules to conduct an anhydrous disinfection test on gastrointestinal endoscopes.METHODS The experimental device rapidly converts sodium percarbonate granules into VHP,and performs disinfection experiments on gastrointestinal endoscope models,disposable endoscopes,and various types of reusable gastrointestinal endoscopes.Variables such as the intraluminal flow rate(FR),relative humidity(RH),exposure dosage,and organic burden are used to explore the factors influencing the disinfection of long and narrow lumens with VHP.RESULTS The device generates a certain concentration of VHP that can achieve high-level disinfection of endoscope models within 30 minutes.RH,exposure dosage,and organic burden significantly affect the disinfection efficacy of VHP,whereas the intraluminal FR does not significantly impact disinfection efficacy.All ten artificially contaminated disposable endoscopes achieved satisfactory disinfection results.Furthermore,when this device was used to treat various types of reusable endoscopes,the disinfection and sterilization effects were not significantly different from those of automatic endoscope disinfection machines(using peracetic acid disinfectant solution)(P>0.05),and the economic cost of disinfectant required per endoscope was lower(1.5 China Yuan),with a shorter disinfection time(30 minutes).CONCLUSION The methods and results of this study provide a basis for further research on the use of VHP for the disinfection of gastrointestinal endoscopes,as well as for the development of anhydrous disinfection technology for gastrointestinal endoscopes.展开更多
Ruthenium(Ru)-based electrocatalysts show great promise as substitutes for platinum(Pt)for the alkaline hydrogen evolution reaction(HER)because of their efficient water dissociation capabilities.Nevertheless,the stron...Ruthenium(Ru)-based electrocatalysts show great promise as substitutes for platinum(Pt)for the alkaline hydrogen evolution reaction(HER)because of their efficient water dissociation capabilities.Nevertheless,the strong adsorption of Ru-OH intermediates(Ru-OHad)blocks the active site,leading to unsatisfactory HER performance.In this study,we report a universal ligand-exchange strategy for synthesizing a MOF-on-MOF-derived FeP-CoP heterostructure-anchored Ru single-atom site catalyst(Ru-FeP-CoP/NPC).The obtained catalyst shows a low overpotential(28 mV at 10 mA cm^(-2))and a high mass activity(9.29 A mg^(-1) at 100 mV),surpassing the performance of commercial Pt/C by a factor of 46.Theoretical studies show that regulating the local charge distribution of Ru single-atom sites could alleviate surrounding OH-blockages,accelerating water dissociation and facilitating hydrogen adsorption/desorption,thus enhancing HER activity.This work aims to inspire further design of highly active and durable electrocatalysts with tailored electronic properties for high-purity hydrogen production.展开更多
Proton exchange membrane water electrolyzers(PEMWEs)are pivotal for efficient hydrogen production due to their high energy efficiency and ability to operate at high current densities,making them ideally suited for int...Proton exchange membrane water electrolyzers(PEMWEs)are pivotal for efficient hydrogen production due to their high energy efficiency and ability to operate at high current densities,making them ideally suited for integration with renewable energy sources.Cobalt(Co)-based nanomaterials,characterized by diverse oxidation states,tunable electronic spin states,and hybrid orbitals,have emerged as promising non-noble metal alternatives to platinum group catalysts for accelerating the anodic oxygen evolution reaction(OER).Based on their inherent properties,this review provides a comprehensive overview of the latest developments in Co-based nanomaterials for acidic OER.The review begins by introducing the operational principles of PEMWEs,the underlying catalytic mechanisms,and the critical design considerations for OER catalysts.It then explores strategies to enhance the activity and stability of Co-based catalysts for acidic OER in PEMWEs,including the incorporation of corrosion-resistant metals or dispersion on acid-resistant supports to increase active surface area and stability;utilization of geometric structural engineering to improve structural integrity and active site efficiency;the optimization of reaction mechanisms to fine-tune catalytic pathways for enhanced stability and performance.The performance degradation mechanisms and metal leaching analysis for Co-based catalysts in PEMWE are also clarified.Finally,this review not only outlines the key challenges associated with Co-based catalysts for acidic OER but also proposes potential strategies to overcome these limitations,offering a roadmap for future advancements and practical implementation of PEMWE technology.展开更多
An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-...An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-doped CoP electrocatalysts in the alkaline hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The introduction of Br modulates the electronic structure of the Co site,endowing Br-CoP with a more metallic character.In addition,P ion leaching promotes the in situ reconstruction of Br-CoOOH,which is the real active site for the OER reaction.Meanwhile,the HER situation is different.On the basis of P ion leaching,the leaching of Br ions promotes the formation of CoP-Co(OH)_(2) active species.In addition,Br doping enhances the adsorption of^(*)H,showing excellent H adsorption free energy,thereby greatly improving the HER activity.Simultaneously,it also enhances the adsorption of OOH^(*),effectively facilitating the occurrence of OER reactions.Br-CoP only needs 261 and 76 mV overpotential to drive the current density of 20 mA cm^(-2) and 10 mA^(-2),which can be maintained unchanged for 100 h.This study provides new insights into anion doping strategies and catalyst reconstruction mechanisms.展开更多
Aryl-ether bonds are facile to attack by oxidizing radicals,thus stimulating the exploitation of ether-free polymers as proton exchange membranes(PEMs)for the long-lasting operation of fuel cells.In this study,a novel...Aryl-ether bonds are facile to attack by oxidizing radicals,thus stimulating the exploitation of ether-free polymers as proton exchange membranes(PEMs)for the long-lasting operation of fuel cells.In this study,a novel class of PEMs derived from all-carbon fluorinated backbone polymers containing sulfide-linked alkyl sulfonic acid side chains have been developed through a straightforward and effective synthetic procedure.The sulfide-linked alkyl sulfonate groups were tethered to the poly(triphenylene pentafluorophenyl)backbone through a quantified and site-specific para-fluoro-thiol click reaction.Owing to the existence of obvious phase separation morphology between hydrophobic main chain and hydrophilic sulfonate groups in the side chains,resulting PEMs demonstrated favorable proton conductivity of 142.5m S/cm at 80℃,while maintaining excellent dimensional stability with an in-plane swelling ratio of<17%as well as a through-plane swelling ratio of<25%.They also exhibit elevated thermal decomposition temperatures(Td5%exceeding 300℃)alongside high tensile strength(>50 MPa).Furthermore,the ether-free full-carbon fluorinated main chain and the-S-group in the side chain,which serves as an effective freeradical scavenger,providing good chemical stability during Fenton’s test.The PEMs achieved a maximum power density of 407 m W/cm^(2)in a single H^(2)/air fuel cell,and an open-circuit voltage decline rate of 0.275 m V/h in a durability test at 30%RH and 80℃.Concurrently,the hydrogen crossover current density is only 1/3 of that of Nafion 212.These findings reveal that the resulted PEMs display considerable antioxidative properties along with commendable performance,with prospective applications in proton exchange membrane fuel cells.展开更多
Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as high...Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as highly efficient photocatalysts for hydrogen evolution.However,their applications in photocatalytic hydrogen evolution(PHE)are infrequently documented and the corresponding photocatalytic mechanism has not yet been explored.Herein,we excavated a novel NOS photocatalyst of(Me_(2)NH_(2))_(6)In_(10)S_(18)(MIS)with a three-dimensional(3D)structure,and successfully incorporated divalent Co(Ⅱ)and metal Co(0)into its cavities via the convenient cation exchange-assisted approach to regulate the critical steps of photocatalytic reactions.As the introduced Co(0)allows for more efficient light utilization and adroitly surficial hydrogen desorption,and meanwhile acts as the‘electron pump’for rapid charge transfer,Co(0)-modified MIS delivers a surprising PHE activity in the initial stage of photocatalysis.With the prolonging of illumination,metal Co(0)gradually escapes from MIS framework,resulting in the decline of PHE performance.By stark contrast,the incorporated Co(Ⅱ)can establish a strong interaction with MIS framework,and simultaneously capture photogenerated electrons from MIS to produce Co(0),which constructs a stable photocatalytic system as well as provides additional channels for spatially separating photogenerated carriers.Thus,Co(Ⅱ)-modified MIS exhibits a robust and highly stable PHE activity of~4944μmol/g/h during the long-term photocatalytic reactions,surpassing most of the previously reported In–S framework photocatalysts.This work represents a breakthrough in the study of PHE performance and mechanism of NOS-based photocatalysts,and sheds light on the design of vip confined NOS-based photocatalysts towards high-efficiency solar-to-chemical energy conversion.展开更多
Designing efficient and durable hydrogen evolution reaction(HER)catalysts for seawater electrolysis is crucial for large-scale hydrogen production.Here,we introduce a theory-driven design of metal/WN electrocatalysts,...Designing efficient and durable hydrogen evolution reaction(HER)catalysts for seawater electrolysis is crucial for large-scale hydrogen production.Here,we introduce a theory-driven design of metal/WN electrocatalysts,with metal strongly coupled to lattice-matched WN.Theoretical calculations for Pt/WN reveal that W sites enhance H_(2)O adsorption/dissociation,optimizing Pt's H binding.The prepared Pt/WN@CP nanorods can catalyze HER with low overpotentials of 107 and 113 mV at 500 mA cm^(-2)in alkaline water/seawater,respectively,surpassing Pt/C.Extended calculations and experiments show that the optimized Ni/WN@CP-90 achieves an optimal ΔG_(H*)and overpotential of 219 mV at 500 mA cm^(-2)in alkaline seawater,demonstrating the versatility of the WN support to promote HER activity.Notably,the anion exchange membrane water electrolyzer(AEMWE)constructed by Pt/WN@CP or Ni/WN@CP-90 with NiFe-LDH@NF demonstrates outstanding hydrogen production activity with excellent Faraday efficiency(~100%)and durability(120 h),indicating the potential application of WN-supported catalysts for efficient and stable seawater electrolysis.展开更多
The zinc indium sulfide(ZnIn_(2)S_(4))semiconductors have garnered significant interest in photocatalysis due to their environmentally friendly characteristics,appropriate bandgap,and high absorption coefficient.Howev...The zinc indium sulfide(ZnIn_(2)S_(4))semiconductors have garnered significant interest in photocatalysis due to their environmentally friendly characteristics,appropriate bandgap,and high absorption coefficient.However,the exploration of advanced strategies to realize the effective and tailored doping still poses significant challenges in enhancing hydrogen evolution performance.In this work,a mild cation exchange strategy is reported to incorporate Ag cations into flower-like ZnIn_(2)S_(4) microspheres,enabling the selective replacement of Zn atoms by Ag.Remarkably,the as-fabricated Ag-ZnIn_(2)S_(4) exhibited exceptional photocatalytic hydrogen production performance,achieving a rate of 8098μmol·g^(−1)·h^(−1) under visible light irradiation.This is 4 times than that of pristine ZnIn_(2)S_(4)(2002μmol·g^(−1)·h^(−1)),and stands as the highest one among metal-doped-ZnIn_(2)S_(4) photocatalysts ever reported.Along with the theoretical calculations,it has been confirmed that the enhanced photocatalytic hydrogen generation behavior can primarily be attributed to the synergistic effect with improved light absorption,reduced adsorption energy,increased active sites and optimized charge carrier transfer,induced by the cation exchange with Ag in ZnIn_(2)S_(4).This work might provide some valuable insights on the design and development of highly efficient visible light driven photocatalysts for water splitting applications.展开更多
The development of efficient and robust non-precious metal electrocatalyst to drive the sluggish hydrogen oxidation reaction(HOR)is the key to the practical application of anion exchange membrane fuel cells(AEMFC),whi...The development of efficient and robust non-precious metal electrocatalyst to drive the sluggish hydrogen oxidation reaction(HOR)is the key to the practical application of anion exchange membrane fuel cells(AEMFC),which relies on the rational regulation of intermediates’binding strength.Herein,we reported a simple strategy to manipulate the adsorption energy of OH^(∗)on electrocatalyst surface via engineering Ni/NbO_(x) heterostructures with manageable oxygen vacancy(Ov).Theoretical calculations confirm that the electronic effect between Ni and NbO_(x) could weaken the hydrogen adsorption on Ni,and the interfacial oxygen vacancy tailor hydroxide binding energy(OHBE).The optimized HBE and OHBE contribute to reduce formation energy of water during the alkaline HOR process.Furthermore,in situ Raman spectroscopy monitor the dynamic process that OH^(∗)adsorbed on oxygen vacancy and react with adjacent H^(∗)adsorbed Ni,confirming the vital role of OH^(∗)for alkaline HOR process.As a result,the optimal Ni/NbO_(x) exhibits a remarkable intrinsic activity with a specific activity of 0.036mA/cm^(2),which is 4-fold than that of pristine Ni counterpart and surpasses most non-precious electrocatalysts ever reported.展开更多
Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this p...Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this paper,the research status of AEM is reviewed,including its material design,preparation method,performance optimization and application in the fields of hydrogen production by electrolytic water,fuel cell and water treatment.In terms of material design,new polymer skeleton structures are emerging to regulate the stability of ion conduction channels and membranes by introducing specific functional groups or changing the molecular chain structure.The preparation methods have been gradually expanded from the traditional solution casting method to more advanced technologies,such as interfacial polymerization and electrostatic spinning,which effectively improve the microstructure and property uniformity of the film.Performance optimization focuses on improving ion conductivity,reducing membrane swelling rate and enhancing chemical stability,and a variety of modification strategies are developed and applied.Despite the achievements made so far,there are still some challenges,such as the lack of long-term stability in highly alkaline environments.Future research needs to further explore new material systems and preparation processes in order to promote the wide application and sustainable development of AEM technology in energy,environmental protection and other fields.展开更多
Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the stron...Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the strong anion exchange resin (201 × 7) as the carrier. The effects of different forms (OH~ - and Cl~ - ) of the strong anion exchange resin, the particle size of the resin, and the reaction temperature on the exchange behavior were described. The exchange kinetic profiles were fitted. The related exc...展开更多
Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolys...Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.展开更多
基金National Key R&D Program of China,Grant/Award Number:2021YFA1500900Basic and Applied Basic Research Foundation of Guangdong Province-Regional Joint Fund Project,Grant/Award Number:2021B1515120024+9 种基金Science Funds of the Education Office of Jiangxi Province,Grant/Award Number:GJJ2201324Science Funds of Jiangxi Province,Grant/Award Numbers:20242BAB25168,20224BAB213018Doctoral Research Start-up Funds of JXSTNU,Grant/Award Number:2022BSQD05China Postdoctoral Science Foundation,Grant/Award Number:2023M741121National Natural Science Foundation of China,Grant/Award Number:22172047Provincial Natural Science Foundation of Hunan,Grant/Award Number:2021JJ30089Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20210324122209025Changsha Municipal Natural Science Foundation,Grant/Award Number:kq2107008Hunan Province of Huxiang Talent project,Grant/Award Number:2023rc3118Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ10006.
文摘Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.
基金financially supported by the National Natural Science Foundation of China(22279069,22179067,22478211 and 22372017)the Major Fundamental Research Program of Natural Science Foundation of Shandong Province(ZR2022ZD10)。
文摘Understanding the role of cations within the catalysts in the interfacial water behavior at the electrolyte/catalyst interface is of pivotal importance for designing advanced catalysts toward hydrogen evolution reaction(HER),which remains obscure and requires deep probing.Herein,we demonstrate the first investigation of interfacial water behavior on the surface of a series of sodium tungsten bronzes(Na_(x)WO_(3),0_(x)WO_(3)/electrolyte interface.Our integrated studies indicate that the Na ions significantly enrich the electronic state of WO_(6)octahedrons in Na_(x)WO_(3),which leads to the regulated electronic and atomic structures,endowing Na_(x)WO_(3)with disordered interfacial water network containing more isolated H_(3)O^(+)and subsequently moderate H^(*)adsorption to speed the Volmer step at the Na_(x)WO_(3)surface,thus boosting the HER.Consequently,the intrinsic HER activities achieved on those Na_(x)WO_(3)are tens of times higher than those on WO_(3).Particularly,it is found that Na concentration x=0.69 endows Na_(x)WO_(3)with the highest intrinsic HER activity,and the resultant Na_(0.69)WO_(3)with a unique porous octahedral structure exhibits a low overpotential of only 64 mV at current density of 10 mA cm^(-2)in acidic electrolyte.This study provides the first insight into the cation-dependent interfacial water behavior induced by the cations within the catalyst and establishes the interfacial water-activity relationship of HER,thus allowing for the design of a more advanced catalyst with efficient interfacial structu res towa rds HER.
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
文摘Objective To test the resuscitative effects from prolonged ventricular fibrillation by epinephrine combined with sodium hydrogen exchanger isoform 1 inhibitor Cariporide. Methods 16 rats were received a 3 mg/kg bolus of Cariporide or the same volume of 0.9%NaCl solution (control) 15 seconds before completion 12 minutes untreated VF. Chest compression (CC) was started for a total of 8 minutes. Adjusted the depth of compressor so that the aortic diastolic pressure to 25~28 mmHg during the 2nd minute of CC. Fix the depth of the piston and this depth was used throughout the remaining 6 minutes of CC. 10 seconds before starting the 3rd minute of chest compression, injected epinephrine (30 μg/kg). Recorded the time at which restoration of spontaneous circulation (ROSC) occurred in Cariporide treated rats. Electrical defibrillation was timed in control group to match the time of spontaneous defibrillation in Cariporide treated rats. To the rats, which cant be defibrillated spontaneously, received chest compression and rescues electrical shocks. Results compared with control group, with the same CC depth, Cariporide treated rats received the higher and longer lasting coronary perfusion pressure (P< 0.05), higher resuscitative rate (P< 0.05), less post resuscitative ventricular ectopic activities (P< 0.001), better hemodynamic effects and longer survival time (P< 0.05). Conclusion Epinephrine combined with sodium hydrogen exchanger isoform 1 inhibitor Cariporide may represent a novel and remarkably effective intervention for resuscitation from prolonged VF.
基金UKRI financial support under grant number EP/Y026098/1 for Global Hydrogen Production Technologies(HyPT)Center。
文摘Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in efficiently transporting hydroxide ions(OH^(-))and minimizing fuel crossover,thus enhancing overall efficiency.While conventional AEMs with linear,side-chain,and block polymer architectures show promise through functionalization,their long-term performance remains a concern.To address this,hyperbranched polymers offer a promising alternative due to their three-dimensional structure,higher terminal functionality,and ease of functionalization.This unique architecture provides interconnected ion transport pathways,fractional free volume,and enhanced long-term stability in alkaline environments.Recent studies have achieved conductivities as high as 304.5 mS cm^(-1),attributed to their improved fractional free volume and microphase separation in hyperbranched AEMs.This review explores the chemical,mechanical,and ionic properties of hyperbranched AEMs in AEMFCs and assesses their potential for application in AEMWEs.Strategies such as blending and structural functionalisation have significantly improved the properties by promoting microphase separation and increasing the density of cationic groups on the polymer surface.The review provides essential insights for future research,highlighting the challenges and opportunities in developing high-performance hyperbranched AEMs to advance hydrogen energy infrastructure.
基金supported by the National Natural Science Foundation of China(52302039,52301043)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110676)+2 种基金the Shenzhen Science and Technology Program(JCYJ20220531095404009,RCBS20221008093057027,GXWD20231129113217001)the Postdoctoral Research Startup Expenses of Shenzhen(NA25501001)the Shenzhen Introduce High-Level Talents and Scientific Research Start-up Founds(NA11409005)。
文摘Graphene encapsulation has been shown to be an effective technique for improving the corrosion resistance of non-noble metal catalysts for the acidic water electrolysis.The key challenge lies in enhancing the electrocatalytic activity of graphene-encapsulated metals while maintaining their durability in acidic media.Herein,an electron-transfer-tuning strategy is investigated at the graphene/NiMo interface,aiming to improve the hydrogen evolution reaction(HER)performance of graphene-encapsulated NiMo catalysts.The doping of Ti,a low electronegativity element,into NiMo substrate was confirmed to increase electron transfer from the metal core toward the graphene.The electron-rich state on graphene facilitates the adsorption of positively charged protons on graphene,thereby enabling a Pt/C-comparable performance in 0.5 M H_(2)SO_(4),with only a 3.8%degradation in performance over a 120-h continuous test.The proton exchange membrane(PEM)water electrolyzer assembled by the N-doped grapheneencapsulated Ti-doped NiMo exhibits a smaller cell voltage to achieve a current density of 2.0 A cm^(-2),in comparison to the Pt/C based counterpart.This study proposes a novel electron-transfer-tuning strategy to improve the HER activity of graphene-encapsulated non-noble metal catalysts without sacrificing durability in acidic electrolytes.
基金Supported by the Joint Logistics Support Force Comprehensive Equipment Research Project,No.LB2023B010100-09.
文摘BACKGROUND Current disinfection methods for gastrointestinal endoscopes consume a significant amount of water resources and produce a large volume of waste.AIM To achieve the objectives of efficiency,speed,and cost-effectiveness,this study utilized vaporized hydrogen peroxide(VHP)generated from sodium percarbonate granules to conduct an anhydrous disinfection test on gastrointestinal endoscopes.METHODS The experimental device rapidly converts sodium percarbonate granules into VHP,and performs disinfection experiments on gastrointestinal endoscope models,disposable endoscopes,and various types of reusable gastrointestinal endoscopes.Variables such as the intraluminal flow rate(FR),relative humidity(RH),exposure dosage,and organic burden are used to explore the factors influencing the disinfection of long and narrow lumens with VHP.RESULTS The device generates a certain concentration of VHP that can achieve high-level disinfection of endoscope models within 30 minutes.RH,exposure dosage,and organic burden significantly affect the disinfection efficacy of VHP,whereas the intraluminal FR does not significantly impact disinfection efficacy.All ten artificially contaminated disposable endoscopes achieved satisfactory disinfection results.Furthermore,when this device was used to treat various types of reusable endoscopes,the disinfection and sterilization effects were not significantly different from those of automatic endoscope disinfection machines(using peracetic acid disinfectant solution)(P>0.05),and the economic cost of disinfectant required per endoscope was lower(1.5 China Yuan),with a shorter disinfection time(30 minutes).CONCLUSION The methods and results of this study provide a basis for further research on the use of VHP for the disinfection of gastrointestinal endoscopes,as well as for the development of anhydrous disinfection technology for gastrointestinal endoscopes.
基金supported by the National Natural Science Foundation of China(22369025)Yunnan Applied Basic Research Projects(202201AT070095,202301AT070098,202301AT070107,202401AT070438,202401AT070433)+2 种基金the 3rd Professional Degree Graduate Practice Innovation Project of Yunnan University(ZC-23235291,ZC-23234269,KC-23236398,KC-23234063)the Education Reform Research Project of Yunnan University(No.2021Z06)the Xingdian Talent Program of Yunnan Province,and the Yunnan Revitalization Talent Support Program.
文摘Ruthenium(Ru)-based electrocatalysts show great promise as substitutes for platinum(Pt)for the alkaline hydrogen evolution reaction(HER)because of their efficient water dissociation capabilities.Nevertheless,the strong adsorption of Ru-OH intermediates(Ru-OHad)blocks the active site,leading to unsatisfactory HER performance.In this study,we report a universal ligand-exchange strategy for synthesizing a MOF-on-MOF-derived FeP-CoP heterostructure-anchored Ru single-atom site catalyst(Ru-FeP-CoP/NPC).The obtained catalyst shows a low overpotential(28 mV at 10 mA cm^(-2))and a high mass activity(9.29 A mg^(-1) at 100 mV),surpassing the performance of commercial Pt/C by a factor of 46.Theoretical studies show that regulating the local charge distribution of Ru single-atom sites could alleviate surrounding OH-blockages,accelerating water dissociation and facilitating hydrogen adsorption/desorption,thus enhancing HER activity.This work aims to inspire further design of highly active and durable electrocatalysts with tailored electronic properties for high-purity hydrogen production.
基金financially supported by the National Natural Science Foundation of China(22172063)the Young Taishan Scholars Program(tsqn201812080)+2 种基金the China Scholarship Council(CSC)for scholarship support(202008130132)the Independent Cultivation Program of Innovation Team of Ji’nan City(2021GXRC052)funding from CERCA Programme/Generalitat de Catalunya。
文摘Proton exchange membrane water electrolyzers(PEMWEs)are pivotal for efficient hydrogen production due to their high energy efficiency and ability to operate at high current densities,making them ideally suited for integration with renewable energy sources.Cobalt(Co)-based nanomaterials,characterized by diverse oxidation states,tunable electronic spin states,and hybrid orbitals,have emerged as promising non-noble metal alternatives to platinum group catalysts for accelerating the anodic oxygen evolution reaction(OER).Based on their inherent properties,this review provides a comprehensive overview of the latest developments in Co-based nanomaterials for acidic OER.The review begins by introducing the operational principles of PEMWEs,the underlying catalytic mechanisms,and the critical design considerations for OER catalysts.It then explores strategies to enhance the activity and stability of Co-based catalysts for acidic OER in PEMWEs,including the incorporation of corrosion-resistant metals or dispersion on acid-resistant supports to increase active surface area and stability;utilization of geometric structural engineering to improve structural integrity and active site efficiency;the optimization of reaction mechanisms to fine-tune catalytic pathways for enhanced stability and performance.The performance degradation mechanisms and metal leaching analysis for Co-based catalysts in PEMWE are also clarified.Finally,this review not only outlines the key challenges associated with Co-based catalysts for acidic OER but also proposes potential strategies to overcome these limitations,offering a roadmap for future advancements and practical implementation of PEMWE technology.
基金supported by the National Natural Science Foundation of China(62404063)the Natural Science Foundation of Heilongjiang Province(YQ2022B008,LH2023A011)+1 种基金the Basic research support plan project for outstanding young teachers in undergraduate universities of Heilongjiang Province(YQJH2023160)the Basic scientific research business expense project of Heilongjiang Provincial Department of Education(2022-KYYWF-0170).
文摘An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-doped CoP electrocatalysts in the alkaline hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The introduction of Br modulates the electronic structure of the Co site,endowing Br-CoP with a more metallic character.In addition,P ion leaching promotes the in situ reconstruction of Br-CoOOH,which is the real active site for the OER reaction.Meanwhile,the HER situation is different.On the basis of P ion leaching,the leaching of Br ions promotes the formation of CoP-Co(OH)_(2) active species.In addition,Br doping enhances the adsorption of^(*)H,showing excellent H adsorption free energy,thereby greatly improving the HER activity.Simultaneously,it also enhances the adsorption of OOH^(*),effectively facilitating the occurrence of OER reactions.Br-CoP only needs 261 and 76 mV overpotential to drive the current density of 20 mA cm^(-2) and 10 mA^(-2),which can be maintained unchanged for 100 h.This study provides new insights into anion doping strategies and catalyst reconstruction mechanisms.
基金supported by the Development of Scientific and Technological Project of Jilin Province(No.20230201139GX)。
文摘Aryl-ether bonds are facile to attack by oxidizing radicals,thus stimulating the exploitation of ether-free polymers as proton exchange membranes(PEMs)for the long-lasting operation of fuel cells.In this study,a novel class of PEMs derived from all-carbon fluorinated backbone polymers containing sulfide-linked alkyl sulfonic acid side chains have been developed through a straightforward and effective synthetic procedure.The sulfide-linked alkyl sulfonate groups were tethered to the poly(triphenylene pentafluorophenyl)backbone through a quantified and site-specific para-fluoro-thiol click reaction.Owing to the existence of obvious phase separation morphology between hydrophobic main chain and hydrophilic sulfonate groups in the side chains,resulting PEMs demonstrated favorable proton conductivity of 142.5m S/cm at 80℃,while maintaining excellent dimensional stability with an in-plane swelling ratio of<17%as well as a through-plane swelling ratio of<25%.They also exhibit elevated thermal decomposition temperatures(Td5%exceeding 300℃)alongside high tensile strength(>50 MPa).Furthermore,the ether-free full-carbon fluorinated main chain and the-S-group in the side chain,which serves as an effective freeradical scavenger,providing good chemical stability during Fenton’s test.The PEMs achieved a maximum power density of 407 m W/cm^(2)in a single H^(2)/air fuel cell,and an open-circuit voltage decline rate of 0.275 m V/h in a durability test at 30%RH and 80℃.Concurrently,the hydrogen crossover current density is only 1/3 of that of Nafion 212.These findings reveal that the resulted PEMs display considerable antioxidative properties along with commendable performance,with prospective applications in proton exchange membrane fuel cells.
基金financial supports provided by the Natural Science Foundation of Fujian Province(No.2024J01195)the National Nature Science Foundation of China(No.21905279)+1 种基金Sanming University(Nos.22YG11 and PYT2201)the Education Scientific Research Project of Youth Teachers in the Education Department of Fujian Province(No.JAT220351).
文摘Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as highly efficient photocatalysts for hydrogen evolution.However,their applications in photocatalytic hydrogen evolution(PHE)are infrequently documented and the corresponding photocatalytic mechanism has not yet been explored.Herein,we excavated a novel NOS photocatalyst of(Me_(2)NH_(2))_(6)In_(10)S_(18)(MIS)with a three-dimensional(3D)structure,and successfully incorporated divalent Co(Ⅱ)and metal Co(0)into its cavities via the convenient cation exchange-assisted approach to regulate the critical steps of photocatalytic reactions.As the introduced Co(0)allows for more efficient light utilization and adroitly surficial hydrogen desorption,and meanwhile acts as the‘electron pump’for rapid charge transfer,Co(0)-modified MIS delivers a surprising PHE activity in the initial stage of photocatalysis.With the prolonging of illumination,metal Co(0)gradually escapes from MIS framework,resulting in the decline of PHE performance.By stark contrast,the incorporated Co(Ⅱ)can establish a strong interaction with MIS framework,and simultaneously capture photogenerated electrons from MIS to produce Co(0),which constructs a stable photocatalytic system as well as provides additional channels for spatially separating photogenerated carriers.Thus,Co(Ⅱ)-modified MIS exhibits a robust and highly stable PHE activity of~4944μmol/g/h during the long-term photocatalytic reactions,surpassing most of the previously reported In–S framework photocatalysts.This work represents a breakthrough in the study of PHE performance and mechanism of NOS-based photocatalysts,and sheds light on the design of vip confined NOS-based photocatalysts towards high-efficiency solar-to-chemical energy conversion.
基金financial support of the National Natural Science Foundation of China(22478450,22478451,22408408)Guangdong Basic and Applied Basic Research Foundation(2024A1515012565,2021A1515010167,2022A1515011196)+3 种基金Guangzhou Key R&D Program/Plan Unveiled Flagship Project(20220602JBGS02)Guangzhou Basic and Applied Basic Research Project(202201011449)Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220,FC202216)100 Talent Research Foundation of Sun Yat-sen University(76110-12230029)。
文摘Designing efficient and durable hydrogen evolution reaction(HER)catalysts for seawater electrolysis is crucial for large-scale hydrogen production.Here,we introduce a theory-driven design of metal/WN electrocatalysts,with metal strongly coupled to lattice-matched WN.Theoretical calculations for Pt/WN reveal that W sites enhance H_(2)O adsorption/dissociation,optimizing Pt's H binding.The prepared Pt/WN@CP nanorods can catalyze HER with low overpotentials of 107 and 113 mV at 500 mA cm^(-2)in alkaline water/seawater,respectively,surpassing Pt/C.Extended calculations and experiments show that the optimized Ni/WN@CP-90 achieves an optimal ΔG_(H*)and overpotential of 219 mV at 500 mA cm^(-2)in alkaline seawater,demonstrating the versatility of the WN support to promote HER activity.Notably,the anion exchange membrane water electrolyzer(AEMWE)constructed by Pt/WN@CP or Ni/WN@CP-90 with NiFe-LDH@NF demonstrates outstanding hydrogen production activity with excellent Faraday efficiency(~100%)and durability(120 h),indicating the potential application of WN-supported catalysts for efficient and stable seawater electrolysis.
基金supported by the National Natural Science Foundation of China(Nos.52272085 and 52372063)Zhejiang Provincial Natural Science Foundation of China(No.LY23E020002)+1 种基金Ningbo Youth Science and Technology Innovation Leading Talents Project(No.2023QL031)the Postdoctoral Fellowship Program of CPSF(No.GZC20233006).
文摘The zinc indium sulfide(ZnIn_(2)S_(4))semiconductors have garnered significant interest in photocatalysis due to their environmentally friendly characteristics,appropriate bandgap,and high absorption coefficient.However,the exploration of advanced strategies to realize the effective and tailored doping still poses significant challenges in enhancing hydrogen evolution performance.In this work,a mild cation exchange strategy is reported to incorporate Ag cations into flower-like ZnIn_(2)S_(4) microspheres,enabling the selective replacement of Zn atoms by Ag.Remarkably,the as-fabricated Ag-ZnIn_(2)S_(4) exhibited exceptional photocatalytic hydrogen production performance,achieving a rate of 8098μmol·g^(−1)·h^(−1) under visible light irradiation.This is 4 times than that of pristine ZnIn_(2)S_(4)(2002μmol·g^(−1)·h^(−1)),and stands as the highest one among metal-doped-ZnIn_(2)S_(4) photocatalysts ever reported.Along with the theoretical calculations,it has been confirmed that the enhanced photocatalytic hydrogen generation behavior can primarily be attributed to the synergistic effect with improved light absorption,reduced adsorption energy,increased active sites and optimized charge carrier transfer,induced by the cation exchange with Ag in ZnIn_(2)S_(4).This work might provide some valuable insights on the design and development of highly efficient visible light driven photocatalysts for water splitting applications.
基金supported by Jilin Province Science and Technology Development Program(Nos.20200201001JC,20210502002ZP,20230101367JC,20220301011GX)Jilin Province Science and Technology Major Project(No.222648GX0105103875).
文摘The development of efficient and robust non-precious metal electrocatalyst to drive the sluggish hydrogen oxidation reaction(HOR)is the key to the practical application of anion exchange membrane fuel cells(AEMFC),which relies on the rational regulation of intermediates’binding strength.Herein,we reported a simple strategy to manipulate the adsorption energy of OH^(∗)on electrocatalyst surface via engineering Ni/NbO_(x) heterostructures with manageable oxygen vacancy(Ov).Theoretical calculations confirm that the electronic effect between Ni and NbO_(x) could weaken the hydrogen adsorption on Ni,and the interfacial oxygen vacancy tailor hydroxide binding energy(OHBE).The optimized HBE and OHBE contribute to reduce formation energy of water during the alkaline HOR process.Furthermore,in situ Raman spectroscopy monitor the dynamic process that OH^(∗)adsorbed on oxygen vacancy and react with adjacent H^(∗)adsorbed Ni,confirming the vital role of OH^(∗)for alkaline HOR process.As a result,the optimal Ni/NbO_(x) exhibits a remarkable intrinsic activity with a specific activity of 0.036mA/cm^(2),which is 4-fold than that of pristine Ni counterpart and surpasses most non-precious electrocatalysts ever reported.
基金“Grassland Talents”of Inner Mongolia Autonomous Region,Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT23030)Technology Breakthrough Engineering Hydrogen Energy Field“Unveiling and Leading”Project(2024KJTW0018)+3 种基金“Steed Plan High Level Talents”of Inner Mongolia University,Carbon neutralization research project(STZX202218)National Natural Science Foundation of China(U22A20107),Inner Mongolia Autonomous Region Natural Science Foundation(2023MS02002)Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion(MATEC2024KF011)National Key R&D Program of China(2022YFA1205201).
文摘Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this paper,the research status of AEM is reviewed,including its material design,preparation method,performance optimization and application in the fields of hydrogen production by electrolytic water,fuel cell and water treatment.In terms of material design,new polymer skeleton structures are emerging to regulate the stability of ion conduction channels and membranes by introducing specific functional groups or changing the molecular chain structure.The preparation methods have been gradually expanded from the traditional solution casting method to more advanced technologies,such as interfacial polymerization and electrostatic spinning,which effectively improve the microstructure and property uniformity of the film.Performance optimization focuses on improving ion conductivity,reducing membrane swelling rate and enhancing chemical stability,and a variety of modification strategies are developed and applied.Despite the achievements made so far,there are still some challenges,such as the lack of long-term stability in highly alkaline environments.Future research needs to further explore new material systems and preparation processes in order to promote the wide application and sustainable development of AEM technology in energy,environmental protection and other fields.
文摘Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the strong anion exchange resin (201 × 7) as the carrier. The effects of different forms (OH~ - and Cl~ - ) of the strong anion exchange resin, the particle size of the resin, and the reaction temperature on the exchange behavior were described. The exchange kinetic profiles were fitted. The related exc...
基金supported by the Key Project of Chinese Ministry of Education (No. 208076)Shandong Provincial Natural Science Foundation,China (No. ZR2010EM069)the Open Project of State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology
文摘Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.