Strategy of Sb-substitution is carried out on the template structure Na4Sn0.67M0.33S4(M=Si,Ge),which affords a series of quinary sulfide-based sodium fast ionic conductors formulated as Na4-x[Sn0.67M0.33]1-xSbxS4(M=Si...Strategy of Sb-substitution is carried out on the template structure Na4Sn0.67M0.33S4(M=Si,Ge),which affords a series of quinary sulfide-based sodium fast ionic conductors formulated as Na4-x[Sn0.67M0.33]1-xSbxS4(M=Si,x=0.1,0.2,0.3;M=Ge,x=0.2.).Among them,the highest ambient ionic conductivity(1.75×10^-4 S cm^-1)is achieved when M=Si and x=0.2.The new fast ionic conductor Na3.8[Sn0.67Si0.33]0.8Sb0.2S4 is isostructural to its structure template Na4Sn0.67Si0.33S4 and thus crystallizes in the space group of I41/acd.It is shown that the incorporation of Sb improves the ionic conductivity.The study of lattice parameters shows that the improvement of the ion conductivity by Sbsubstitution is mainly due to the enlarged crystal lattice.Furthermore,using Na3.8[Sn0.67Si0.33]0.8Sb0.2S4as solid electrolytes,room temperature all-solid-state sodium battery of Se0.05S0.95@pPAN/Na3Sn is realized,which proves the novel fast ionic conductor a potential candidate to apply in sodium solid state battery.This work not only extends the scope of Na4[Sn0.67Si0.33]S4,the I41/acd space group template,but also deepens the understanding of the lattice size effect on the structure and property relationship by aliovalent substitution.展开更多
All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,...All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,the issue of lithium resource availability is selectively overlooked.Considering that the amount of lithium required for all-solidstate LIBs is not sustainable with current lithium resources,another system that also offers the dual advantages of high energy density and safetydall-solid-state sodium-ion batteries(SIBs)dholds significant sustainable advantages and is likely to be the strong contender in the competition for developing next-generation high-energy-density batteries.This article briefly introduces the research status of all-solid-state SIBs,explains the sources of their advantages,and discusses potential approaches to the development of solid sodium-ion conductors,aiming to spark the interest of researchers and attract more attention to the field of all-solid-state SIBs.展开更多
Na_(3)MnTi(PO_(4))_(3)(NMTP)shows significant potential as a cathode for sodium-ion batteries(SIBs)owing to its multi-electron transfer capability and high theoretical capacity.Nevertheless,its practical application i...Na_(3)MnTi(PO_(4))_(3)(NMTP)shows significant potential as a cathode for sodium-ion batteries(SIBs)owing to its multi-electron transfer capability and high theoretical capacity.Nevertheless,its practical application is significantly limited by sluggish ion diffusion and rapid capacity decay,which stem from structural evolution during the sodiation/desodiation process.Herein,an Fe-doping strategy is proposed to reinforce the structural framework and enhance the electrochemical performance of NMTP.Trace Fe doping is found to shorten the M-O(M=Ti and Mn)bond while extending the Na-O bond,effectively minimizing structural fluctuations in NMTP during charge/discharge cycles and enhancing sodium-ion diffusion kinetics.Consequently,the Na_(3)Mn_(0.99)Fe_(0.02)Ti_(0.99)(PO_(4))_(3)(NMTP-Fe_(0.02))cathode demonstrates exceptional rate capability and long-term stability,delivering a high reversible capacity of 153.2 mAh·g^(-1)at 0.1 C and retaining 99.3 mAh·g^(-1)after 800 cycles at 5 C,exhibiting a capacity preservation rate of 81.5%.Moreover,its outstanding performance in full-cell configurations highlights the significant potential of NMTP-Fe0.02 for practical applications.展开更多
钠离子电池因储量丰富、成本低廉而成为可替代锂离子电池的储能设备之一,尤其是在大规模储能领域展现出了广阔的应用前景。然而,类似锂离子电池,以可燃的液态电解质作为离子传输媒介的钠离子电池也不可避免地面临着安全性的挑战。固态...钠离子电池因储量丰富、成本低廉而成为可替代锂离子电池的储能设备之一,尤其是在大规模储能领域展现出了广阔的应用前景。然而,类似锂离子电池,以可燃的液态电解质作为离子传输媒介的钠离子电池也不可避免地面临着安全性的挑战。固态电解质的使用不仅可以大幅提升电池系统的安全性,与金属负极匹配更能进一步实现电池能量密度同步提升。在各类固态电解质中,无机固态电解质以高离子电导率和离子迁移数、高力学性能及稳定性等诸多优势而备受瞩目。尽管如此,在全固态钠电池的实际应用中,不同类型的无机固态电解质材料仍面临离子电导率低、化学与电化学稳定性差等不同困境。因此,无机固态电解质材料的研究和开发是实现固态钠电池应用的必经之路。本文介绍了离子在固体中的迁移机制,并综述了氧化物、硫化物以及络合氢化物钠离子固态电解质的研究进展,重点强调不同结构电解质离子电导率的提升策略和提高化学及电化学稳定性的方法,包括通过离子掺杂提升离子电导率,调控晶界处化学组分或利用低熔点添加剂降低钠的快离子导体(natrium super ionic conductor,NASICON)型电解质的晶界电阻,解决硫化物型电解质的空气敏感问题,开发新型硫化物超离子导体,降低络合氢化物的有序-无序相变温度同时提高室温离子电导率等。最后对固态电解质面临的关键挑战和未来发展趋势进行总结和展望。展开更多
Poly(vinylidene fluoride)(PVDF)-based solid polymer electrolytes(SPEs)with“lithium salt in polymer”configurations typically exhibit poor lithium salt dissociation and mechanical strength.In this study,we proposed a ...Poly(vinylidene fluoride)(PVDF)-based solid polymer electrolytes(SPEs)with“lithium salt in polymer”configurations typically exhibit poor lithium salt dissociation and mechanical strength.In this study,we proposed a composite polymer electrolyte(CPE)for solid-state lithium-ion batteries(LIBs)as a novel approach to address the challenges.The CPE incorporates a high dielectric polymer poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)(P(VDF-TrFE-CTFE))as the polymer matrix,and sodium super ionic conductor(NASICON)-type ceramic Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3)(LATP)as fillers.The optimized CPE demonstrates enhanced dissociation of lithium salts,leading to high ionic conductivity tLi+(1.1 mS·cm^(-1))and improved lithium transference numbers(=0.51).Meanwhile,the interaction between LATP inorganic filler and P(VDF-TrFE-CTFE)enhances the elasticity and tensile strength(1.09 MPa)of the CPE.The graphite|CPE|NCM811(NCM stands for lithium nickel manganese cobalt oxide.Chemical formula of NCM811 is“LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)”)cell achieves a high specific capacity of 160 mAh·g^(-1) with excellent cycles stably for 300 cycles at 1 C.In addition,the flexible graphite|CPE|NCM811 pouch cell demonstrates exceptional capacity stability under dynamic bending for 10,000 times.Furthermore,the CPE can fulfil the fabrication process needs of flexible stacking-type and winding-type cells,highlighting its versatility and suitability for various LIB configurations in real applications.展开更多
基金supported by the National Natural Science Foundation of China(21975087 and 51902116)。
文摘Strategy of Sb-substitution is carried out on the template structure Na4Sn0.67M0.33S4(M=Si,Ge),which affords a series of quinary sulfide-based sodium fast ionic conductors formulated as Na4-x[Sn0.67M0.33]1-xSbxS4(M=Si,x=0.1,0.2,0.3;M=Ge,x=0.2.).Among them,the highest ambient ionic conductivity(1.75×10^-4 S cm^-1)is achieved when M=Si and x=0.2.The new fast ionic conductor Na3.8[Sn0.67Si0.33]0.8Sb0.2S4 is isostructural to its structure template Na4Sn0.67Si0.33S4 and thus crystallizes in the space group of I41/acd.It is shown that the incorporation of Sb improves the ionic conductivity.The study of lattice parameters shows that the improvement of the ion conductivity by Sbsubstitution is mainly due to the enlarged crystal lattice.Furthermore,using Na3.8[Sn0.67Si0.33]0.8Sb0.2S4as solid electrolytes,room temperature all-solid-state sodium battery of Se0.05S0.95@pPAN/Na3Sn is realized,which proves the novel fast ionic conductor a potential candidate to apply in sodium solid state battery.This work not only extends the scope of Na4[Sn0.67Si0.33]S4,the I41/acd space group template,but also deepens the understanding of the lattice size effect on the structure and property relationship by aliovalent substitution.
基金the support of the Grant-in-Aid for JSPS Research Fellow.
文摘All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,the issue of lithium resource availability is selectively overlooked.Considering that the amount of lithium required for all-solidstate LIBs is not sustainable with current lithium resources,another system that also offers the dual advantages of high energy density and safetydall-solid-state sodium-ion batteries(SIBs)dholds significant sustainable advantages and is likely to be the strong contender in the competition for developing next-generation high-energy-density batteries.This article briefly introduces the research status of all-solid-state SIBs,explains the sources of their advantages,and discusses potential approaches to the development of solid sodium-ion conductors,aiming to spark the interest of researchers and attract more attention to the field of all-solid-state SIBs.
基金supported by the National Natural Science Foundation of China(Nos.52102239,52072112,and 51672069)the Foundation of Henan Educational Committee(No.22A140003)+6 种基金the Zhong yuan Thousand Talents Program of Henan Province(No.ZYQR201912155)the Natural Science Foundation of Henan Province Youth Foundation(No.242300420315)the Henan Overseas Expertise Introduction Center for Discipline Innovation(No.CXJD2021003)the Program for Innovative Research Team in Science and Technology in the University of Henan Province(No.20IRTSTHN012)Science and Technology Development Project of Henan Province(No.202102210105)the Major Science and Technology Projects in Henan Province,China(No.241100240200)the Natural Science Foundation of Henan Province in China(No.242300421011).
文摘Na_(3)MnTi(PO_(4))_(3)(NMTP)shows significant potential as a cathode for sodium-ion batteries(SIBs)owing to its multi-electron transfer capability and high theoretical capacity.Nevertheless,its practical application is significantly limited by sluggish ion diffusion and rapid capacity decay,which stem from structural evolution during the sodiation/desodiation process.Herein,an Fe-doping strategy is proposed to reinforce the structural framework and enhance the electrochemical performance of NMTP.Trace Fe doping is found to shorten the M-O(M=Ti and Mn)bond while extending the Na-O bond,effectively minimizing structural fluctuations in NMTP during charge/discharge cycles and enhancing sodium-ion diffusion kinetics.Consequently,the Na_(3)Mn_(0.99)Fe_(0.02)Ti_(0.99)(PO_(4))_(3)(NMTP-Fe_(0.02))cathode demonstrates exceptional rate capability and long-term stability,delivering a high reversible capacity of 153.2 mAh·g^(-1)at 0.1 C and retaining 99.3 mAh·g^(-1)after 800 cycles at 5 C,exhibiting a capacity preservation rate of 81.5%.Moreover,its outstanding performance in full-cell configurations highlights the significant potential of NMTP-Fe0.02 for practical applications.
文摘钠离子电池因储量丰富、成本低廉而成为可替代锂离子电池的储能设备之一,尤其是在大规模储能领域展现出了广阔的应用前景。然而,类似锂离子电池,以可燃的液态电解质作为离子传输媒介的钠离子电池也不可避免地面临着安全性的挑战。固态电解质的使用不仅可以大幅提升电池系统的安全性,与金属负极匹配更能进一步实现电池能量密度同步提升。在各类固态电解质中,无机固态电解质以高离子电导率和离子迁移数、高力学性能及稳定性等诸多优势而备受瞩目。尽管如此,在全固态钠电池的实际应用中,不同类型的无机固态电解质材料仍面临离子电导率低、化学与电化学稳定性差等不同困境。因此,无机固态电解质材料的研究和开发是实现固态钠电池应用的必经之路。本文介绍了离子在固体中的迁移机制,并综述了氧化物、硫化物以及络合氢化物钠离子固态电解质的研究进展,重点强调不同结构电解质离子电导率的提升策略和提高化学及电化学稳定性的方法,包括通过离子掺杂提升离子电导率,调控晶界处化学组分或利用低熔点添加剂降低钠的快离子导体(natrium super ionic conductor,NASICON)型电解质的晶界电阻,解决硫化物型电解质的空气敏感问题,开发新型硫化物超离子导体,降低络合氢化物的有序-无序相变温度同时提高室温离子电导率等。最后对固态电解质面临的关键挑战和未来发展趋势进行总结和展望。
文摘Poly(vinylidene fluoride)(PVDF)-based solid polymer electrolytes(SPEs)with“lithium salt in polymer”configurations typically exhibit poor lithium salt dissociation and mechanical strength.In this study,we proposed a composite polymer electrolyte(CPE)for solid-state lithium-ion batteries(LIBs)as a novel approach to address the challenges.The CPE incorporates a high dielectric polymer poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)(P(VDF-TrFE-CTFE))as the polymer matrix,and sodium super ionic conductor(NASICON)-type ceramic Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3)(LATP)as fillers.The optimized CPE demonstrates enhanced dissociation of lithium salts,leading to high ionic conductivity tLi+(1.1 mS·cm^(-1))and improved lithium transference numbers(=0.51).Meanwhile,the interaction between LATP inorganic filler and P(VDF-TrFE-CTFE)enhances the elasticity and tensile strength(1.09 MPa)of the CPE.The graphite|CPE|NCM811(NCM stands for lithium nickel manganese cobalt oxide.Chemical formula of NCM811 is“LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)”)cell achieves a high specific capacity of 160 mAh·g^(-1) with excellent cycles stably for 300 cycles at 1 C.In addition,the flexible graphite|CPE|NCM811 pouch cell demonstrates exceptional capacity stability under dynamic bending for 10,000 times.Furthermore,the CPE can fulfil the fabrication process needs of flexible stacking-type and winding-type cells,highlighting its versatility and suitability for various LIB configurations in real applications.