The effects of ceria and zirconium oxides additions to alumina-supported palladium catalysts on methane combustion behavior were investigated. The structure and TPR/TPO properties were studied by XRD, TPR, TPO techniq...The effects of ceria and zirconium oxides additions to alumina-supported palladium catalysts on methane combustion behavior were investigated. The structure and TPR/TPO properties were studied by XRD, TPR, TPO techniques. The results show that the addition of Ce-Zr oxides improves the thermal stability of alumina and PdO. The Pd/Ce0.2Zr0.8/Al2O3 exhibits the highest activity and thermal stability for methane combustion.展开更多
A series of 0.2 wt% Pd/Sn_(0.9)Ce_(0.1)O_2 catalysts were prepared by impregnation method based on the presynthesis of Sn_(0.9)Ce_(0.1)O_2 support prepared by co-precipitation method, and then characterized by Brunaue...A series of 0.2 wt% Pd/Sn_(0.9)Ce_(0.1)O_2 catalysts were prepared by impregnation method based on the presynthesis of Sn_(0.9)Ce_(0.1)O_2 support prepared by co-precipitation method, and then characterized by Brunauer–Emmett–Teller(BET), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Raman, CO chemical adsorption and hydrogen temperature-programmed reduction(H_2-TPR) techniques. The effect of calcination temperature of the composite oxide support on the catalytic performances of the Pd/Sn_(0.9)Ce_(0.1)O_2 catalyst for the CH_4 total oxidation was studied. It is found that the catalytic activity of the Pd/Sn_(0.9)Ce_(0.1)O_2 catalyst increases with the increase in calcination temperature of the Pd/Sn_(0.9)Ce_(0.1)O_2 support. The 0.2 wt% Pd/Sn_(0.9)Ce_(0.1)O_2/1100 catalyst(the Pd/Sn_(0.9)Ce_(0.1)O_2 support was calcined at 1100 ℃) exhibits the best reactive activity(T_(10)= 255 ℃). The excellent activity of the 0.2 wt% Pd/Sn_(0.9)Ce_(0.1)O_2/1100 catalyst should be attributed to the high reducibility of PdO, the excellent oxygen mobility of the support and the high content of active Pd^(2+) species on the Pd/Sn_(0.9)Ce_(0.1)O_2 catalyst.展开更多
文摘The effects of ceria and zirconium oxides additions to alumina-supported palladium catalysts on methane combustion behavior were investigated. The structure and TPR/TPO properties were studied by XRD, TPR, TPO techniques. The results show that the addition of Ce-Zr oxides improves the thermal stability of alumina and PdO. The Pd/Ce0.2Zr0.8/Al2O3 exhibits the highest activity and thermal stability for methane combustion.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300)the National Key Basic Research Program of China (No. 2013CB933200)Science and Technology Commission of Shanghai Municipality (No. 16ZR1407900)
文摘A series of 0.2 wt% Pd/Sn_(0.9)Ce_(0.1)O_2 catalysts were prepared by impregnation method based on the presynthesis of Sn_(0.9)Ce_(0.1)O_2 support prepared by co-precipitation method, and then characterized by Brunauer–Emmett–Teller(BET), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Raman, CO chemical adsorption and hydrogen temperature-programmed reduction(H_2-TPR) techniques. The effect of calcination temperature of the composite oxide support on the catalytic performances of the Pd/Sn_(0.9)Ce_(0.1)O_2 catalyst for the CH_4 total oxidation was studied. It is found that the catalytic activity of the Pd/Sn_(0.9)Ce_(0.1)O_2 catalyst increases with the increase in calcination temperature of the Pd/Sn_(0.9)Ce_(0.1)O_2 support. The 0.2 wt% Pd/Sn_(0.9)Ce_(0.1)O_2/1100 catalyst(the Pd/Sn_(0.9)Ce_(0.1)O_2 support was calcined at 1100 ℃) exhibits the best reactive activity(T_(10)= 255 ℃). The excellent activity of the 0.2 wt% Pd/Sn_(0.9)Ce_(0.1)O_2/1100 catalyst should be attributed to the high reducibility of PdO, the excellent oxygen mobility of the support and the high content of active Pd^(2+) species on the Pd/Sn_(0.9)Ce_(0.1)O_2 catalyst.