Mg2Sn04 exhibits green photoluminescence and persistent luminescence, which originate from oxygen vacancies. When Ti4+ ions were doped, an interesting Mg2SnO4:Ti4+ phosphor with bluish white photoluminescence under...Mg2Sn04 exhibits green photoluminescence and persistent luminescence, which originate from oxygen vacancies. When Ti4+ ions were doped, an interesting Mg2SnO4:Ti4+ phosphor with bluish white photoluminescence under ultraviolet irradiation and with green persistent luminescence was first obtained. Our investigation reveals that two emission centres exist in Mg2SnO4:Ti4+. The centres responsible for the green emission are considered to be the F centres (oxygen vacancies) and the blue centres are the TiO6 complex. Trap clusters in the band gap with different [Snmg-oi],[snmg-VO], [SnMg-VO ] and mgsn,correspond to the components at 85 °C, 146 213 °C of the thermoluminescence curve.展开更多
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 502041032)the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2011-125)the National Innovation Experiment Program for University Students, China (Grant No. 101073005)
文摘Mg2Sn04 exhibits green photoluminescence and persistent luminescence, which originate from oxygen vacancies. When Ti4+ ions were doped, an interesting Mg2SnO4:Ti4+ phosphor with bluish white photoluminescence under ultraviolet irradiation and with green persistent luminescence was first obtained. Our investigation reveals that two emission centres exist in Mg2SnO4:Ti4+. The centres responsible for the green emission are considered to be the F centres (oxygen vacancies) and the blue centres are the TiO6 complex. Trap clusters in the band gap with different [Snmg-oi],[snmg-VO], [SnMg-VO ] and mgsn,correspond to the components at 85 °C, 146 213 °C of the thermoluminescence curve.