The nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 was successfully prepared by a carrier transfer method. The pristine and modified samples were characterized with various techniques such as XRD, SEM, XPS and EDS. The result...The nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 was successfully prepared by a carrier transfer method. The pristine and modified samples were characterized with various techniques such as XRD, SEM, XPS and EDS. The results showed that the SnO2particles did not enter the crystal structure of LiNi1/3Co1/3Mn1/3O2, many nano SnO2 particles were uniformly covered on the surface of LiNi1/3Co1/3Mn1/3O2 and the modified thin layer could inhibit the dissolution of transition metal oxides. The electrochemical tests indicated that the existence of nano SnO2 could improve the discharge capacity and rate capability owing to the decreased interfacial polarization, The cycling stability was remarkably improved at room temperature and 55 ℃. The XRD patterns of the fresh NCM electrode and after 50 cycles proved that the structural change of NCM was not so effective on the capacity fade.展开更多
Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), ...Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.展开更多
To improve the cycle stability at high voltage and high charge/discharge rate, spherical LiNi1/3Co1/3Mn1/3O2 was coated with Al2O3 by using heterogeneous nucleation process, and the physical and electrochemical proper...To improve the cycle stability at high voltage and high charge/discharge rate, spherical LiNi1/3Co1/3Mn1/3O2 was coated with Al2O3 by using heterogeneous nucleation process, and the physical and electrochemical properties were studied. The SEM images show that there is a uniform coating on the modified spherical LiNi1/3Co1/3Mn1/3O2. The electrochemical tests indicate that the properties of LiNi1/3Co1/3Mn1/3O2 coated with 0.5% aluminum oxide are the best. The initial capacities are 150 and 173 mA·h/g at the rate of 1C in the voltage range of 2.7-4.3 V and 2.7-4.6 V, respectively, and the discharge capacities maintain about 99% and 85% after 30 cycles, respectively. While those of the bare LiNi1/3Co1/3Mn1/3O2 are only 90% and 75%, respectively. The CV tests of LiNi1/3Co1/3Mn1/3O2 show that Al2O3-coating can restrain the oxide-reduction peak currents fading during the charge/discharge course.展开更多
采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料...采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-Na Fe O2结构(空间群:R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 m Ah·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 m Ah·g-1(原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料仅为30 m Ah·g-1),倍率性能十分优异。展开更多
基金financially supported by National Science Foundation for Fostering Talents in Basic Research of China(No.J2013-002)
文摘The nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 was successfully prepared by a carrier transfer method. The pristine and modified samples were characterized with various techniques such as XRD, SEM, XPS and EDS. The results showed that the SnO2particles did not enter the crystal structure of LiNi1/3Co1/3Mn1/3O2, many nano SnO2 particles were uniformly covered on the surface of LiNi1/3Co1/3Mn1/3O2 and the modified thin layer could inhibit the dissolution of transition metal oxides. The electrochemical tests indicated that the existence of nano SnO2 could improve the discharge capacity and rate capability owing to the decreased interfacial polarization, The cycling stability was remarkably improved at room temperature and 55 ℃. The XRD patterns of the fresh NCM electrode and after 50 cycles proved that the structural change of NCM was not so effective on the capacity fade.
基金supported by the National Key Project for Basic Research of China (No. 2005CB623605)the National Natural Science Foundation of China (No. 11074039)the National Science Foundation for Young Scholars (No.11004032)
文摘Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.
文摘To improve the cycle stability at high voltage and high charge/discharge rate, spherical LiNi1/3Co1/3Mn1/3O2 was coated with Al2O3 by using heterogeneous nucleation process, and the physical and electrochemical properties were studied. The SEM images show that there is a uniform coating on the modified spherical LiNi1/3Co1/3Mn1/3O2. The electrochemical tests indicate that the properties of LiNi1/3Co1/3Mn1/3O2 coated with 0.5% aluminum oxide are the best. The initial capacities are 150 and 173 mA·h/g at the rate of 1C in the voltage range of 2.7-4.3 V and 2.7-4.6 V, respectively, and the discharge capacities maintain about 99% and 85% after 30 cycles, respectively. While those of the bare LiNi1/3Co1/3Mn1/3O2 are only 90% and 75%, respectively. The CV tests of LiNi1/3Co1/3Mn1/3O2 show that Al2O3-coating can restrain the oxide-reduction peak currents fading during the charge/discharge course.
文摘采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-Na Fe O2结构(空间群:R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 m Ah·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 m Ah·g-1(原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料仅为30 m Ah·g-1),倍率性能十分优异。