期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Theoretical assessment of hydrogen production and multicycle energy conversion via solar thermochemical cycle based on nonvolatile SnO2 被引量:2
1
作者 Mingkai Fu Huajun Xu +1 位作者 Haitao Ma Xin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期177-184,共8页
A kind of solar thermochemical cycle based on methanothermal reduction of SnO2 is proposed for H2 and CO production. We find that the oxygen release capacity and thermodynamic driven force for methanothermal reduction... A kind of solar thermochemical cycle based on methanothermal reduction of SnO2 is proposed for H2 and CO production. We find that the oxygen release capacity and thermodynamic driven force for methanothermal reduction of SnO2 are large, and suggest CH4 :SnO2 = 2:1 as the feasible reduction condition for achieving high purities of syngas and avoiding vaporization of produced Sn. Subsequently, the amount of H2 and energetic upgrade factors under different oxidation conditions are compared, in which excess water vapor is found beneficial for hydrogen production and fuel energetic upgradation. Moreover, the effect of incom plete recovery of SnO2 on the subsequent cycle is underscored and explained. After accounting for factors such as isothermal operation and cycle stability, CH4 :SnO2 = 2:1 and H2O:Sn = 4:1 are suggested for highest solar-to-fuel efficiency of 46.1% at nonisothermal condition, where the reduction and oxidation temperature are 1400 and 600 K, respectively. 展开更多
关键词 sno2/sn based solar-chemical cycle Hydrogen PRODUCTION Non-volatile redox Isothermal and NONISOTHERMAL operation SYNGAS PRODUCTION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部