To improve the compactness and properties of C/C-SiC-ZrC composites produced by precursor infiltration and pyrolysis(PIP)method,the low-temperature reactive melt infiltration(RMI)process was used to seal the composite...To improve the compactness and properties of C/C-SiC-ZrC composites produced by precursor infiltration and pyrolysis(PIP)method,the low-temperature reactive melt infiltration(RMI)process was used to seal the composites using Zr_(2)Cu as the filler.The microstructure,mechanical properties,and ablation properties of the Zr_(2)Cu packed composites were analyzed.Results show that during Zr_(2)Cu impregnation,the melt efficiently fills the large pores of the composites and is converted to ZrCu due to a partial reaction of zirconium with carbon.This results in an increase in composite density from 1.91 g/cm^(3)to 2.24 g/cm^(3)and a reduction in open porosity by 27.35%.Additionally,the flexural strength of Zr_(2)Cu packed C/C-SiC-ZrC composites is improved from 122.78±8.09 MPa to 135.53±5.40 MPa.After plasma ablation for 20 s,the modified composites demonstrate superior ablative resistance compared to PIP C/C-SiC-ZrC,with mass ablation and linear ablation rates of 2.77×10^(−3)g/s and 2.60×10^(−3)mm/s,respectively.The“selftranspiration”effect of the low-melting point copper-containing phase absorbs the heat of the plasma flame,further reducing the ablation temperature and promoting the formation of refined ZrO_(2)particles within the SiO_(2)melting layer.This provides more stable erosion protection for Zr_(2)Cu packed C/C-SiC-ZrC composites.展开更多
SnO2-glaze composites were prepared by Sb-doped SnO2 and SiO2-CaO-Al2O3-B2O3 glaze. The composites changed from an electrical insulator to a conductor as the SnO2 content increased from Owt% to 90 wt% . The complex im...SnO2-glaze composites were prepared by Sb-doped SnO2 and SiO2-CaO-Al2O3-B2O3 glaze. The composites changed from an electrical insulator to a conductor as the SnO2 content increased from Owt% to 90 wt% . The complex impedance spectra of the fabricated composites were investigated in the frequency range of 100Hz-40 MHz and three kinds of typical shape of complex impedance spectra were recorded and analyzed. The ,spectrum is quite close to the model of conduction via nonohmic contactiug when the SnO2 content is relatively low, In high loading region, the spectrum shows the conduction pattern through ohmic contact chains . In the moderate loading region, the model is a mixture of the above two models. Equivalent circuit of the composite changes from resistor-capacitor circuit to resistor-inductor circuit as the content of SnO2 increases.展开更多
SnO2-Li4Ti5O12 was prepared by sol-gel method using tin tetrachloride,lithium acetate,tetrabutylorthotitanate and aqueous ammonia as starting materials.The composite was characterized by thermogravimertric(TG)analysis...SnO2-Li4Ti5O12 was prepared by sol-gel method using tin tetrachloride,lithium acetate,tetrabutylorthotitanate and aqueous ammonia as starting materials.The composite was characterized by thermogravimertric(TG)analysis and differential thermal analysis(DTA),X-ray diffractometry(XRD)and transmission electron microscopy(TEM)combined with electrochemical tests.The results show that SnO2-Li4Ti5O12 composite derived by sol-gel technique is a nanocomposite with core-shell structure, and the amorphous Li4Ti5O12 layer with 20?40 nm in thickness is coated on the surface of SnO2 particles.Electrochemical tests show that SnO2-Li4Ti5O12 composite delivers a reversible capacity of 688.7 mA·h/g at 0.1C and 93.4%of that is retained after 60 cycles at 0.2C.The amorphous Li4Ti5O12 in composite can accommodate the volume change of SnO2 electrode and prevent the small and active Sn particles from aggregating into larger and inactive Sn clusters during the cycling effectively,and enhance the cycling stability of SnO2 electrode significantly.展开更多
To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack ceme...To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.展开更多
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the...C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.展开更多
Au-Pt/SnO2/GC composite electrode was prepared by self-assembling Au-Pt nanoparticles on SnO2 film, which was deposited on actived glassy carbon (GC). Atomic force microscopy (AFM) and scanning electron microscopy...Au-Pt/SnO2/GC composite electrode was prepared by self-assembling Au-Pt nanoparticles on SnO2 film, which was deposited on actived glassy carbon (GC). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images revealed that dense and uniform Au-Pt particles with 25-nm diameter were dispersed on SnO2 film. X-ray photoelectron spectroscopy (XPS) results proved that there was an interaction between Au-Pt nanoparticles and SnO2 support. Electrochemical experiments showed that Au-Pt/SnOz/GC composite electrode had a good electrocatalytic activity to the oxidation of methanol展开更多
All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid elect...All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.展开更多
Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 ...Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 electrode, while short-circuit photocurrent (Isc) was varied with the ratio of the TiO2. Appropriate content of the TiO2 can be beneficial to the efficiency of the solar cell, and it gives negative impact on the composite electrode when the content of TiO2 is higher.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning tech-nique. ZnO/SiO2/SnO...[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning tech-nique. ZnO/SiO2/SnO2/TiO2 composite nanofibers were obtained by calcination of the relevant precursor composite fibers. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM). TG-DTA analysis reveals that solvents, organic compounds and inorganic in the precursor composite fibers are decomposed and volatilized totally, and the mass of the samples kept constant when sintering temperature was above 900?C, and the total mass loss percentage is 88%. XRD results show that the precursor composite fibers are amorphous in structure, and pure phase ZnO/SiO2/SnO2/TiO2 com-posite nanofibers are obtained by calcination of the relevant precursor composite fibers. FTIR analysis manifests that pure inorganic oxides are formed. SEM analysis indicates that the width of the precursor composite fibers is ca. 1.485 ± 0.043 μm. The width of the ZnO/SiO2/SnO2/TiO2 composite nanofibers is ca. 1145.098 ± 68.093 nm.展开更多
Ultrahigh-temperature ceramics were added to C/C composites to meet their application requirement in a high-temperature oxidizing environment. C/C-ZrB2-SiC composites were fabricated by high-solid-loading slurry impre...Ultrahigh-temperature ceramics were added to C/C composites to meet their application requirement in a high-temperature oxidizing environment. C/C-ZrB2-SiC composites were fabricated by high-solid-loading slurry impregnation with polymer infiltration and pyrolysis. The dispersion and rheological behavior of ZrB2 slurry and the microstructural, mechanical, and ablation properties of the C/C-ZrB2-SiC composites were investigated. Results indicated that a well-dispersed and low-viscosity ZrB2 slurry was obtained using 0.40 wt.% polyethyleneimine as a dispersant at pH 5. Ceramics were uniformly distributed in the short-cut fiber layer and needle-punched area. The flexural strength of the C/C-ZrB2-SiC composites was 309.30 MPa. The composites exhibited satisfactory ablation resistance under the oxyacetylene flame of 2500℃, and the mass and linear ablation rates were 0.40 mg/s and 0.91 μm/s, respectively. A continuous and compact Zr O2 layer, which could effectively reduce the diffusion rate of oxygen and protect the composites from being ablated, was formed.展开更多
Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To bre...Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.展开更多
To improve the uniformity and the content of HfBin Hf B-Si-based ceramic coating and alleviate the damage of substrate,and then enhance the high-temperature(1700°C)oxidation and cyclic ablation resistances of car...To improve the uniformity and the content of HfBin Hf B-Si-based ceramic coating and alleviate the damage of substrate,and then enhance the high-temperature(1700°C)oxidation and cyclic ablation resistances of carbon/carbon composites,a close-knit double layer HfB_(2)-SiC/SiC coatings with a mosaic structure and high content of HfBwere prepared by a novel dipping-carbonization assisted pack cementation methods(DPC–HS/S).In contrast,a HfB_(2)-SiC/SiC coatings were also fabricated by pack cementation(PC–HS/S).Results revealed that the oxidation and ablation protective performances of the DPC–HS/S coatings were superior to those of PC–HS/S coatings.After 30 thermal cycles between 1500°C and room temperature,the mass gain of the coated sample was 0.78%,and the mass loss was 1.65%after oxidation at 1700°C for 156 h.Moreover,under an oxyacetylene torch ablation for 180 s(3 cycles),the linear ablation rate of the DPC–HS/S coated specimen was 1.62μm/s,which was much lower than that of PC–HS/S coated specimen(3.08μm/s).展开更多
MXenes,a new family of two-dimensional transition metal carbides or nitrides,have attracted tremendous attention for various applications due to their unique properties such as good electrical conductivity,hydrophilic...MXenes,a new family of two-dimensional transition metal carbides or nitrides,have attracted tremendous attention for various applications due to their unique properties such as good electrical conductivity,hydrophilicity,and ion intercalability.In this work,Ti_(3)C_(2) MXene,or MX,is converted to MX-TiO_(2) composites using a simple and rapid microwave hydrothermal treatment in HCl/NaCl mixture solution that induces formation of fine TiO_(2) particles on the MX parent structure and imparts photocatalytic activity to the resulting MX-TiO_(2) composites.The composites were used for enrofloxacin(ENR),a frequently found contaminating antibiotic,removal from water.The relative amount of the MX and TiO_(2) can be controlled by controlling the hydrothermal temperature resulting in composites with tunable adsorption/photocatalytic properties.NaCl addition was found to play important role as composites synthesized without NaCl could not adsorb enrofloxacin well.Adding NaCl into the hydrothermal treatment causes sodium ions to be simultaneously intercalated into the composite structure,improving ENR adsorption greatly from 1 to 6 mg ENR/g composite.It also slows down the MX to TiO2 conversion leading to a smaller and more uniform distribution of TiO_(2) particles on the structure.MX-TiO_(2)/NaCl composites,which have sodium intercalated in their structures,showed both higher ENR adsorption and photocatalytic activity than composites without NaCl despite the latter having higher TiO2 content.Adsorbed ENR on the composites can be efficiently degraded by free radicals generated from the photoexcited TiO2 particles,leading to high photocatalytic degradation efficiency.This demonstrates the synergetic effect between adsorption and photocatalytic degradation of the synthesized compounds.展开更多
This study evaluated the mechanical properties and thermal properties of Al-12 vol%B4 C composite at elevated temperature strengthened with in situ Al2 O3 network.The composite was fabricated using powder metallurgy(P...This study evaluated the mechanical properties and thermal properties of Al-12 vol%B4 C composite at elevated temperature strengthened with in situ Al2 O3 network.The composite was fabricated using powder metallurgy(PM)with raw materials of fine atomized aluminum powders,and the associated microstructures were observed.At 350℃,the composite had ultimate tensile strength of UTS=137 MPa,yield strength of YS0.2=118 MPa,and elongation ofε=4%.Besides,the mechanical properties of the composite remained unchanged at 350℃after the long holding periods up to 1000 h.The excellent mechanical properties and thermal stability at 350℃were secured by in situ am-Al2O3 network that strengthened the grain boundaries.The interfacial debonding and brittle cracking of B4 C particles were the main fracture mechanisms of the composite.In addition,the influence of sintering temperature and rolling deformation on the microstructures and mechanical properties was studied.展开更多
Two-dimensional(2D)Ti3C2Tx MXene is an attractive additive not only used in base oil due to its low friction coefficient,but also used in composites due to its high aspect ratio and rich surface functional groups.So f...Two-dimensional(2D)Ti3C2Tx MXene is an attractive additive not only used in base oil due to its low friction coefficient,but also used in composites due to its high aspect ratio and rich surface functional groups.So far there has been intense research into polymer matrix composites reinforced with Ti3C2Tx,Here we report on the use of 2D Ti3C2Tx to enhance the mechanical and frictional properties of Al matrix composites.Ti3C2Tx/Al composites were designed and prepared by pre s sureless sintering followed by hot extrusion technique.The prepared composites exhibit a homogeneous distribution of Ti3C2Tx.The Vickers hardness and the tensile strength continuously increase with increasing Ti3C2Tx content.A hardness of 0.52 GPa and a tensile strength of 148 MPa were achieved in the 3 wt%Ti3C2Tx/Al composite.The frictional properties of pure Al and the Ti3C2Tx/Al composite were comparably studied under dry sliding.A low friction coefficient of 0.2,twice lower than that of pure Al,was achieved in the 3 wt%Ti3C2Tx/Al composite.Ti3C2Tx acting as a solid lubricant reduces the abrasive wear in the composite,improving the frictional properties of Al matrix composites.展开更多
Titanium oxide(TiO_(2)),with excellent cycling stability and low volume expansion,is a promising anode material for lithium-ion battery(LIB),which suffers from low electrical conductivity and poor rate capability.Comb...Titanium oxide(TiO_(2)),with excellent cycling stability and low volume expansion,is a promising anode material for lithium-ion battery(LIB),which suffers from low electrical conductivity and poor rate capability.Combining nano-sized TiO_(2)with conductive materials is proved an efficient method to improve its electrochemical properties.Here,rutile TiO_(2)/carbon nanosheet was obtained by calcinating MAX(Ti_(3)AlC_(2))and Na_(2)C0_(3)together and water-bathing with HC1.The lamellar carbon atoms in MAX are converted to 2D carbon nanosheets with urchin-like rutile TiO_(2)anchored on.The unique architecture can offer plentiful active sites,shorten the ion diffusion distance and improve the conductivity.The composite exhibits a high reversible capacity of 247 mA h g^-1,excellent rate performance(38 mA h g^-1 at 50 C)and stable cycling performance(0.014%decay per cycle during 2000 cycles)for lithium storage.展开更多
CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the cou...CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the coupling CO_(2) jet and polycrystalline-diamond-compact(PDC)cutter are still unclear.Whereby,we established a coupled smoothed particle hydrodynamics/finite element method(SPH/FEM)model to simulate the composite rock-breaking of high-pressure CO_(2) jet&PDC cutter.Combined with the experimental research results,the mechanism of composite rock-breaking is studied from the perspectives of rock stress field,cutting force and jet field.The results show that the composite rock-breaking can effectively relieve the influence of vibration and shock on PDC cutter.Meanwhile,the high-pressure CO_(2) jet has a positive effect on carrying rock debris,which can effectively reduce the temperature rising and the thermal wear of the PDC cutter.In addition,the effects of CO_(2) jet parameters on composite rock-breaking were studied,such as jet impact velocity,nozzle diameter,jet injection angle and impact distance.The studies show that when the impact velocity of the CO_(2) jet is greater than 250 m/s,the CO_(2) jet could quickly break the rock.It is found that the optimal range of nozzle diameter is 1.5–2.5 mm,the best injection angle of CO_(2) jet is 60,the optimal impact distance is 10 times the nozzle diameter.The above studies could provide theoretical supports and technical guidance for composite rock-breaking,which is useful for the CO_(2) underbalance drilling and drill bit design.展开更多
Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indica...Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indicating high crystalline and phase purity.The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm,and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm.The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles.Using lithium metal as anode,the composite delivers a discharge capacities of 102.8,96.4 and 90.3 mA·h/g at rates of 0.5C,1C and 2C,respectively.After 100 cycles at 0.5C,a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%.The Li+diffusion coefficient(D)of Na2FePO4F/C composite is calculated as 1.71×10^–9 cm^2/s.This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.展开更多
基金Open Fund of Zhijian Laboratory,Rocket Force University of Engineering(2024-ZJSYS-KF02-09)National Natural Science Foundation of China(51902028,52272034)+1 种基金Key Research and Development Program of Shaanxi(2023JBGS-15)Fundamental Research Funds for the Central Universities(Changan University,300102313202,300102312406)。
文摘To improve the compactness and properties of C/C-SiC-ZrC composites produced by precursor infiltration and pyrolysis(PIP)method,the low-temperature reactive melt infiltration(RMI)process was used to seal the composites using Zr_(2)Cu as the filler.The microstructure,mechanical properties,and ablation properties of the Zr_(2)Cu packed composites were analyzed.Results show that during Zr_(2)Cu impregnation,the melt efficiently fills the large pores of the composites and is converted to ZrCu due to a partial reaction of zirconium with carbon.This results in an increase in composite density from 1.91 g/cm^(3)to 2.24 g/cm^(3)and a reduction in open porosity by 27.35%.Additionally,the flexural strength of Zr_(2)Cu packed C/C-SiC-ZrC composites is improved from 122.78±8.09 MPa to 135.53±5.40 MPa.After plasma ablation for 20 s,the modified composites demonstrate superior ablative resistance compared to PIP C/C-SiC-ZrC,with mass ablation and linear ablation rates of 2.77×10^(−3)g/s and 2.60×10^(−3)mm/s,respectively.The“selftranspiration”effect of the low-melting point copper-containing phase absorbs the heat of the plasma flame,further reducing the ablation temperature and promoting the formation of refined ZrO_(2)particles within the SiO_(2)melting layer.This provides more stable erosion protection for Zr_(2)Cu packed C/C-SiC-ZrC composites.
基金Funded by Guangdong Provincal Natural Science Foundation(No.05006564) and Science &Technology Programof GuangdongProvince(No.2004B10301007)
文摘SnO2-glaze composites were prepared by Sb-doped SnO2 and SiO2-CaO-Al2O3-B2O3 glaze. The composites changed from an electrical insulator to a conductor as the SnO2 content increased from Owt% to 90 wt% . The complex impedance spectra of the fabricated composites were investigated in the frequency range of 100Hz-40 MHz and three kinds of typical shape of complex impedance spectra were recorded and analyzed. The ,spectrum is quite close to the model of conduction via nonohmic contactiug when the SnO2 content is relatively low, In high loading region, the spectrum shows the conduction pattern through ohmic contact chains . In the moderate loading region, the model is a mixture of the above two models. Equivalent circuit of the composite changes from resistor-capacitor circuit to resistor-inductor circuit as the content of SnO2 increases.
基金Project(20873054)supported by the National Natural Science Foundation of ChinaProject(2005037700)supported by Postdoctoral Science Foundation of China+2 种基金Project(07JJ3014)supported by Hunan Provincial Natural Science Foundation of ChinaProject(07A058)supported by Scientific Research Fund of Hunan Provincial Education DepartmentProject(2004107)supported by Postdoctoral Science Foundation of Central South University
文摘SnO2-Li4Ti5O12 was prepared by sol-gel method using tin tetrachloride,lithium acetate,tetrabutylorthotitanate and aqueous ammonia as starting materials.The composite was characterized by thermogravimertric(TG)analysis and differential thermal analysis(DTA),X-ray diffractometry(XRD)and transmission electron microscopy(TEM)combined with electrochemical tests.The results show that SnO2-Li4Ti5O12 composite derived by sol-gel technique is a nanocomposite with core-shell structure, and the amorphous Li4Ti5O12 layer with 20?40 nm in thickness is coated on the surface of SnO2 particles.Electrochemical tests show that SnO2-Li4Ti5O12 composite delivers a reversible capacity of 688.7 mA·h/g at 0.1C and 93.4%of that is retained after 60 cycles at 0.2C.The amorphous Li4Ti5O12 in composite can accommodate the volume change of SnO2 electrode and prevent the small and active Sn particles from aggregating into larger and inactive Sn clusters during the cycling effectively,and enhance the cycling stability of SnO2 electrode significantly.
基金Projects(51221001,50972120)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing of Northwestern Polytechnical University,ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.
基金Projects(51272213,51221001)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)Project(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.
基金supported by the High-Tech Research and Development Program of China (No. 2007AA03Z219)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, and the Beijing Natural Science Foundation (No. 207001)
文摘Au-Pt/SnO2/GC composite electrode was prepared by self-assembling Au-Pt nanoparticles on SnO2 film, which was deposited on actived glassy carbon (GC). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images revealed that dense and uniform Au-Pt particles with 25-nm diameter were dispersed on SnO2 film. X-ray photoelectron spectroscopy (XPS) results proved that there was an interaction between Au-Pt nanoparticles and SnO2 support. Electrochemical experiments showed that Au-Pt/SnOz/GC composite electrode had a good electrocatalytic activity to the oxidation of methanol
基金supported by the National Natural Science Foundation of China(52203066,51973157,61904123,51873152)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the Science and Technology Plans of Tianjin(19PTSYJC00010)the Tianjin Research Innovation Project for Postgraduate Students(2021YJSB234)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.
文摘Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 electrode, while short-circuit photocurrent (Isc) was varied with the ratio of the TiO2. Appropriate content of the TiO2 can be beneficial to the efficiency of the solar cell, and it gives negative impact on the composite electrode when the content of TiO2 is higher.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
文摘[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning tech-nique. ZnO/SiO2/SnO2/TiO2 composite nanofibers were obtained by calcination of the relevant precursor composite fibers. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM). TG-DTA analysis reveals that solvents, organic compounds and inorganic in the precursor composite fibers are decomposed and volatilized totally, and the mass of the samples kept constant when sintering temperature was above 900?C, and the total mass loss percentage is 88%. XRD results show that the precursor composite fibers are amorphous in structure, and pure phase ZnO/SiO2/SnO2/TiO2 com-posite nanofibers are obtained by calcination of the relevant precursor composite fibers. FTIR analysis manifests that pure inorganic oxides are formed. SEM analysis indicates that the width of the precursor composite fibers is ca. 1.485 ± 0.043 μm. The width of the ZnO/SiO2/SnO2/TiO2 composite nanofibers is ca. 1145.098 ± 68.093 nm.
基金Project(GFZX0101040101-2012C20X) supported by the National Basic Research Program of ChinaProject(2017JJ2320) supported by the Natural Science Foundation of Hunan Province,China
文摘Ultrahigh-temperature ceramics were added to C/C composites to meet their application requirement in a high-temperature oxidizing environment. C/C-ZrB2-SiC composites were fabricated by high-solid-loading slurry impregnation with polymer infiltration and pyrolysis. The dispersion and rheological behavior of ZrB2 slurry and the microstructural, mechanical, and ablation properties of the C/C-ZrB2-SiC composites were investigated. Results indicated that a well-dispersed and low-viscosity ZrB2 slurry was obtained using 0.40 wt.% polyethyleneimine as a dispersant at pH 5. Ceramics were uniformly distributed in the short-cut fiber layer and needle-punched area. The flexural strength of the C/C-ZrB2-SiC composites was 309.30 MPa. The composites exhibited satisfactory ablation resistance under the oxyacetylene flame of 2500℃, and the mass and linear ablation rates were 0.40 mg/s and 0.91 μm/s, respectively. A continuous and compact Zr O2 layer, which could effectively reduce the diffusion rate of oxygen and protect the composites from being ablated, was formed.
基金The authors acknowledge funding from the National Natural Science Foundation of China(Nos.51572157,21902085,and 51702188)Natural Science Foundation of Shandong Province(No.ZR2019QF012)+1 种基金Fundamental Research Funds for the Central Universities(No.2018JC036 and No.2018JC046)Young Scholars Program of Shandong University(No.2018WLJH25).
文摘Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.
基金financially supported by the National Natural Science Foundation of China(Nos.51872239,52061135102,52002321)the Creative Research Foundation of Science and Technology on Thermostructural Composite Materials Laboratory(No.5050200015)+1 种基金the Fundamental Research Funds for the Central Universities(No.G2020KY05125)the Xi’an Association for Science and Technology"Young Talent Support Project"(No.095920211338)。
文摘To improve the uniformity and the content of HfBin Hf B-Si-based ceramic coating and alleviate the damage of substrate,and then enhance the high-temperature(1700°C)oxidation and cyclic ablation resistances of carbon/carbon composites,a close-knit double layer HfB_(2)-SiC/SiC coatings with a mosaic structure and high content of HfBwere prepared by a novel dipping-carbonization assisted pack cementation methods(DPC–HS/S).In contrast,a HfB_(2)-SiC/SiC coatings were also fabricated by pack cementation(PC–HS/S).Results revealed that the oxidation and ablation protective performances of the DPC–HS/S coatings were superior to those of PC–HS/S coatings.After 30 thermal cycles between 1500°C and room temperature,the mass gain of the coated sample was 0.78%,and the mass loss was 1.65%after oxidation at 1700°C for 156 h.Moreover,under an oxyacetylene torch ablation for 180 s(3 cycles),the linear ablation rate of the DPC–HS/S coated specimen was 1.62μm/s,which was much lower than that of PC–HS/S coated specimen(3.08μm/s).
基金National Nanotechnology Center (NANOTEC) (No.P1751698) for financial supportThailand Advanced Institute of Science and Technology and Tokyo Institute of Technology (TAIST-Tokyo Tech) for collaborative program and scholarship supports+1 种基金supported by Thammasat University Research Fund Contract No.TUFT 055/2563Support from Center of Excellence in Functional Advanced Materials Engineering (CoE FAME),SIIT
文摘MXenes,a new family of two-dimensional transition metal carbides or nitrides,have attracted tremendous attention for various applications due to their unique properties such as good electrical conductivity,hydrophilicity,and ion intercalability.In this work,Ti_(3)C_(2) MXene,or MX,is converted to MX-TiO_(2) composites using a simple and rapid microwave hydrothermal treatment in HCl/NaCl mixture solution that induces formation of fine TiO_(2) particles on the MX parent structure and imparts photocatalytic activity to the resulting MX-TiO_(2) composites.The composites were used for enrofloxacin(ENR),a frequently found contaminating antibiotic,removal from water.The relative amount of the MX and TiO_(2) can be controlled by controlling the hydrothermal temperature resulting in composites with tunable adsorption/photocatalytic properties.NaCl addition was found to play important role as composites synthesized without NaCl could not adsorb enrofloxacin well.Adding NaCl into the hydrothermal treatment causes sodium ions to be simultaneously intercalated into the composite structure,improving ENR adsorption greatly from 1 to 6 mg ENR/g composite.It also slows down the MX to TiO2 conversion leading to a smaller and more uniform distribution of TiO_(2) particles on the structure.MX-TiO_(2)/NaCl composites,which have sodium intercalated in their structures,showed both higher ENR adsorption and photocatalytic activity than composites without NaCl despite the latter having higher TiO2 content.Adsorbed ENR on the composites can be efficiently degraded by free radicals generated from the photoexcited TiO2 particles,leading to high photocatalytic degradation efficiency.This demonstrates the synergetic effect between adsorption and photocatalytic degradation of the synthesized compounds.
基金financially supported by Shenzhen Engineering Laboratory of Nuclear Materials and Service Safety。
文摘This study evaluated the mechanical properties and thermal properties of Al-12 vol%B4 C composite at elevated temperature strengthened with in situ Al2 O3 network.The composite was fabricated using powder metallurgy(PM)with raw materials of fine atomized aluminum powders,and the associated microstructures were observed.At 350℃,the composite had ultimate tensile strength of UTS=137 MPa,yield strength of YS0.2=118 MPa,and elongation ofε=4%.Besides,the mechanical properties of the composite remained unchanged at 350℃after the long holding periods up to 1000 h.The excellent mechanical properties and thermal stability at 350℃were secured by in situ am-Al2O3 network that strengthened the grain boundaries.The interfacial debonding and brittle cracking of B4 C particles were the main fracture mechanisms of the composite.In addition,the influence of sintering temperature and rolling deformation on the microstructures and mechanical properties was studied.
基金supported by the National Natural Science Foundation of China(No.51772020)Beijing Natural Science Foundation(No.2182058)+1 种基金Beijing Government Funds for the Constructive Project of Central UniversitiesEquipment Development Department of the National Military Commission Foundation of China(No.JZX7Y20190262063601)。
文摘Two-dimensional(2D)Ti3C2Tx MXene is an attractive additive not only used in base oil due to its low friction coefficient,but also used in composites due to its high aspect ratio and rich surface functional groups.So far there has been intense research into polymer matrix composites reinforced with Ti3C2Tx,Here we report on the use of 2D Ti3C2Tx to enhance the mechanical and frictional properties of Al matrix composites.Ti3C2Tx/Al composites were designed and prepared by pre s sureless sintering followed by hot extrusion technique.The prepared composites exhibit a homogeneous distribution of Ti3C2Tx.The Vickers hardness and the tensile strength continuously increase with increasing Ti3C2Tx content.A hardness of 0.52 GPa and a tensile strength of 148 MPa were achieved in the 3 wt%Ti3C2Tx/Al composite.The frictional properties of pure Al and the Ti3C2Tx/Al composite were comparably studied under dry sliding.A low friction coefficient of 0.2,twice lower than that of pure Al,was achieved in the 3 wt%Ti3C2Tx/Al composite.Ti3C2Tx acting as a solid lubricant reduces the abrasive wear in the composite,improving the frictional properties of Al matrix composites.
基金supported by the National Natural Science Foundation of China(NSFC,No.51572011)the National Key Research and Development Program of China(No.2017YFB0102004)the Fundamental Research Funds for the Central Universities(No.ZY1802)
文摘Titanium oxide(TiO_(2)),with excellent cycling stability and low volume expansion,is a promising anode material for lithium-ion battery(LIB),which suffers from low electrical conductivity and poor rate capability.Combining nano-sized TiO_(2)with conductive materials is proved an efficient method to improve its electrochemical properties.Here,rutile TiO_(2)/carbon nanosheet was obtained by calcinating MAX(Ti_(3)AlC_(2))and Na_(2)C0_(3)together and water-bathing with HC1.The lamellar carbon atoms in MAX are converted to 2D carbon nanosheets with urchin-like rutile TiO_(2)anchored on.The unique architecture can offer plentiful active sites,shorten the ion diffusion distance and improve the conductivity.The composite exhibits a high reversible capacity of 247 mA h g^-1,excellent rate performance(38 mA h g^-1 at 50 C)and stable cycling performance(0.014%decay per cycle during 2000 cycles)for lithium storage.
基金This work was supported by the National Natural Science Foundation of China(No.52004236)Sichuan Science and Technology Program(No.2021JDRC0114)+4 种基金the Starting Project of Southwest Petroleum University(No.2019QHZ009)the China Postdoctoral Science Foundation(No.2020M673285)the Open Project Program of Key Laboratory of Groundwater Resources and Environment(Jilin University)Ministry of Education(No.202005009KF)the Chinese Scholarship Council(CSC)funding(No.202008515107).
文摘CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the coupling CO_(2) jet and polycrystalline-diamond-compact(PDC)cutter are still unclear.Whereby,we established a coupled smoothed particle hydrodynamics/finite element method(SPH/FEM)model to simulate the composite rock-breaking of high-pressure CO_(2) jet&PDC cutter.Combined with the experimental research results,the mechanism of composite rock-breaking is studied from the perspectives of rock stress field,cutting force and jet field.The results show that the composite rock-breaking can effectively relieve the influence of vibration and shock on PDC cutter.Meanwhile,the high-pressure CO_(2) jet has a positive effect on carrying rock debris,which can effectively reduce the temperature rising and the thermal wear of the PDC cutter.In addition,the effects of CO_(2) jet parameters on composite rock-breaking were studied,such as jet impact velocity,nozzle diameter,jet injection angle and impact distance.The studies show that when the impact velocity of the CO_(2) jet is greater than 250 m/s,the CO_(2) jet could quickly break the rock.It is found that the optimal range of nozzle diameter is 1.5–2.5 mm,the best injection angle of CO_(2) jet is 60,the optimal impact distance is 10 times the nozzle diameter.The above studies could provide theoretical supports and technical guidance for composite rock-breaking,which is useful for the CO_(2) underbalance drilling and drill bit design.
基金Projects(51472211,51502256)supported by the National Natural Science Foundation of ChinaProjects(2016GK4005,2016GK4030)supported by the Strategic New Industry of Hunan Province,ChinaProject(13C925)supported by the Research Foundation of Education Bureau of Hunan Province,China
文摘Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indicating high crystalline and phase purity.The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm,and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm.The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles.Using lithium metal as anode,the composite delivers a discharge capacities of 102.8,96.4 and 90.3 mA·h/g at rates of 0.5C,1C and 2C,respectively.After 100 cycles at 0.5C,a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%.The Li+diffusion coefficient(D)of Na2FePO4F/C composite is calculated as 1.71×10^–9 cm^2/s.This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.