This article presents the elaboration of tin oxide (SnO2) thin films on glass substrates by using a home-made spray pyrolysis system. Effects of film thickness on the structural, optical, and electrical film propert...This article presents the elaboration of tin oxide (SnO2) thin films on glass substrates by using a home-made spray pyrolysis system. Effects of film thickness on the structural, optical, and electrical film properties are investigated. The films are characterized by several techniques such as x-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet- visible (UV-Vis) transmission, and four-probe point measurements, and the results suggest that the prepared films are uniform and well adherent to the substrates. X-ray diffraction (XRD) patterns show that SnO2 film is of polycrystal with cassiterite tetragonal crystal structure and a preferential orientation along the (110) plane. The calculated grain sizes are in a range from 32.93 nm to 56.88 nm. Optical transmittance spectra of the films show that their high transparency average transmittances are greater than 65% in the visible region. The optical gaps of SnO2 thin films are found to be in a range of 3.64 eV-3.94 eV. Figures of merit for SnO2 thin films reveal that their maximum value is about 1.15 x 10-4 Ω-1 at λ = 550 nm. Moreover, the measured electrical resistivity at room temperature is on the order of 10^-2 Ω.cm.展开更多
Porous SnO2 nanocrystalline thin films were successfully electrodeposited from an oxygen-saturated acid aqueous solution of SnCl2 containing different concentrations of butyl-rhodamine B(BRhB) at 70℃.BRhB with subs...Porous SnO2 nanocrystalline thin films were successfully electrodeposited from an oxygen-saturated acid aqueous solution of SnCl2 containing different concentrations of butyl-rhodamine B(BRhB) at 70℃.BRhB with substitute of amidocyanogen can be dissolved in the acid deposition solution,where HCl was added to suppress hydrolysis of SnCl2.So it was used as a structure-directing agent to promote the crystal growth of SnO_2.The formed porous morphology and tetragonal rutile crystalline structure of the electrodeposited thin films were controlled by the addition of BRhB with different amounts.展开更多
Tin oxide (SnO2) thin films are prepared at different temperatures by plasmaenhanced chemical vapor deposition (PECVD). The structural characterizations of the films are investigated by various analysis techniques. X-...Tin oxide (SnO2) thin films are prepared at different temperatures by plasmaenhanced chemical vapor deposition (PECVD). The structural characterizations of the films are investigated by various analysis techniques. X-ray diffraction patterns (XRD) show that the phase of SnO2 films are different at different deposition temperatures. The sheet resistance of the films decreases with increase of deposition temperature. X-ray photoelectron spectroscopy (XPS) shows that the SnO2 thin film is non-stoichiometric. The sheet resistance increases with increase in oxygen flow. Sb-doped SnO2 thin films are more sensitive to alcohol than carbon monoxide, and its maximum sensitivity is about 220%.展开更多
Polyaniline (PANI), polyaniline/titanium dioxide (PANI/TiO2), polyaniline/tin oxide (PANI/SnO2) and polyaniline/indium oxide (PANI/In203) thin films were developed by using an in-situ self-assembly method at ...Polyaniline (PANI), polyaniline/titanium dioxide (PANI/TiO2), polyaniline/tin oxide (PANI/SnO2) and polyaniline/indium oxide (PANI/In203) thin films were developed by using an in-situ self-assembly method at -10℃. Chemical structure, optical property and morphology of all the thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). NH3 gas-sensing properties of PANI and PANI nanocomposite thin films were examined at ambient temperature. The results showed that all the sensors composed of PANI nanocomposite thin films had faster response/recovery rate with better reproducibility, selectivity and long-term stability to NH3 than PANI,thiS film sensor, and PANI/TiO2 nanocomposite thin film sensor showed optimum NH3 gas-sensing characteristics. The effect of humidity on the responses of all the sensors was also investigated.展开更多
High efficient Cr-Al2O3 cermet selective surfaces coated by sol-gel SnO2 thin film for high-temperature application were synthesized by air plasma spraying(APS),followed further heat and polish treatment.The phase com...High efficient Cr-Al2O3 cermet selective surfaces coated by sol-gel SnO2 thin film for high-temperature application were synthesized by air plasma spraying(APS),followed further heat and polish treatment.The phase composition and micro morphology of coating samples were characterized by X-ray diffractions(XRD),scanning electron microscope(SEM)and roughmeter respectively.The solar absorptance(α)and thermal emittance(ε)were determined by optical spectrum instrument.The results show that Cr-Al2O3 cermet coating has a high absorptivity nearly 0.90.But unfortunately,the emissivity of these coatings is nearly 0.50 because of the big thickness and coarse surface prepared by APS technique.However,once coated SnO2 thin film,the composite coatings exhibit excellent selective absorbing property of α=0.89 and ε=0.12.Thus,SnO2 thin film plays a significant role in decreasing the emissivity of coatings as antireflection layer.And furthermore,the optical performance shows that more metal content and smooth surface are favorable for the selective absorbing property.Moreover,the coatings have excellent bond strength with stainless steel substrate and thermal shock resistance at high temperature.展开更多
CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets wit...CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.展开更多
This paper reports on the effects of film thickness and doping content on the optical and electrical properties of fluorine-doped tin oxide. Tin (Ⅱ) chloride dehydrate, ammonium fluoride dehydrate, ethanol and HC1 ...This paper reports on the effects of film thickness and doping content on the optical and electrical properties of fluorine-doped tin oxide. Tin (Ⅱ) chloride dehydrate, ammonium fluoride dehydrate, ethanol and HC1 were used as the starting materials, dopant source, solvent and stabilizer, respectively. The doped films were deposited on a glass substrate at different concentrations varying between 0 and 5 wt% using an ultrasonic spray technique. The SnO2:F thin films were deposited at a 350 ℃ pending time (5, 15, 60 and 90 s). The average transmission was about 80%, and the films were thus transparent in the visible region. The optical energy gap of the doped films with 2.5 wt% F was found to increase from 3.47 to 3.89 eV with increasing film thickness, and increased after doping at 5 wt%. The decrease in the Urbach energy of the SnO2:F thin films indicated a decrease in the defects. The increase in the electrical conductivity of the films reached maximum values of 278.9 and 281.9 (Ω.cm)-1 for 2.5 and 5 wt% F, respectively, indicating that the films exhibited an n-type semiconducting nature. A systematic study on the influence of film thickness and doping content on the properties of SnO2:F thin films deposited by ultrasonic spray was reported.展开更多
文摘This article presents the elaboration of tin oxide (SnO2) thin films on glass substrates by using a home-made spray pyrolysis system. Effects of film thickness on the structural, optical, and electrical film properties are investigated. The films are characterized by several techniques such as x-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet- visible (UV-Vis) transmission, and four-probe point measurements, and the results suggest that the prepared films are uniform and well adherent to the substrates. X-ray diffraction (XRD) patterns show that SnO2 film is of polycrystal with cassiterite tetragonal crystal structure and a preferential orientation along the (110) plane. The calculated grain sizes are in a range from 32.93 nm to 56.88 nm. Optical transmittance spectra of the films show that their high transparency average transmittances are greater than 65% in the visible region. The optical gaps of SnO2 thin films are found to be in a range of 3.64 eV-3.94 eV. Figures of merit for SnO2 thin films reveal that their maximum value is about 1.15 x 10-4 Ω-1 at λ = 550 nm. Moreover, the measured electrical resistivity at room temperature is on the order of 10^-2 Ω.cm.
基金supported by the National Natural Science Foundation of China(Nos.20873162,50872007)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF09006)Beijing Natural Science Foundation(No.8092022).
文摘Porous SnO2 nanocrystalline thin films were successfully electrodeposited from an oxygen-saturated acid aqueous solution of SnCl2 containing different concentrations of butyl-rhodamine B(BRhB) at 70℃.BRhB with substitute of amidocyanogen can be dissolved in the acid deposition solution,where HCl was added to suppress hydrolysis of SnCl2.So it was used as a structure-directing agent to promote the crystal growth of SnO_2.The formed porous morphology and tetragonal rutile crystalline structure of the electrodeposited thin films were controlled by the addition of BRhB with different amounts.
基金The project partially supported by Natural Science Foundation of Guangdong Province (No. 021169 and 000675) Jinan University (No. 445046) Science and Technology Plan Foundation of Guangdong Province (No. 2002C40505)
文摘Tin oxide (SnO2) thin films are prepared at different temperatures by plasmaenhanced chemical vapor deposition (PECVD). The structural characterizations of the films are investigated by various analysis techniques. X-ray diffraction patterns (XRD) show that the phase of SnO2 films are different at different deposition temperatures. The sheet resistance of the films decreases with increase of deposition temperature. X-ray photoelectron spectroscopy (XPS) shows that the SnO2 thin film is non-stoichiometric. The sheet resistance increases with increase in oxygen flow. Sb-doped SnO2 thin films are more sensitive to alcohol than carbon monoxide, and its maximum sensitivity is about 220%.
基金supported by the National Natural Science Foundation of China under grant Nos.60425101 and 60736005
文摘Polyaniline (PANI), polyaniline/titanium dioxide (PANI/TiO2), polyaniline/tin oxide (PANI/SnO2) and polyaniline/indium oxide (PANI/In203) thin films were developed by using an in-situ self-assembly method at -10℃. Chemical structure, optical property and morphology of all the thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). NH3 gas-sensing properties of PANI and PANI nanocomposite thin films were examined at ambient temperature. The results showed that all the sensors composed of PANI nanocomposite thin films had faster response/recovery rate with better reproducibility, selectivity and long-term stability to NH3 than PANI,thiS film sensor, and PANI/TiO2 nanocomposite thin film sensor showed optimum NH3 gas-sensing characteristics. The effect of humidity on the responses of all the sensors was also investigated.
文摘High efficient Cr-Al2O3 cermet selective surfaces coated by sol-gel SnO2 thin film for high-temperature application were synthesized by air plasma spraying(APS),followed further heat and polish treatment.The phase composition and micro morphology of coating samples were characterized by X-ray diffractions(XRD),scanning electron microscope(SEM)and roughmeter respectively.The solar absorptance(α)and thermal emittance(ε)were determined by optical spectrum instrument.The results show that Cr-Al2O3 cermet coating has a high absorptivity nearly 0.90.But unfortunately,the emissivity of these coatings is nearly 0.50 because of the big thickness and coarse surface prepared by APS technique.However,once coated SnO2 thin film,the composite coatings exhibit excellent selective absorbing property of α=0.89 and ε=0.12.Thus,SnO2 thin film plays a significant role in decreasing the emissivity of coatings as antireflection layer.And furthermore,the optical performance shows that more metal content and smooth surface are favorable for the selective absorbing property.Moreover,the coatings have excellent bond strength with stainless steel substrate and thermal shock resistance at high temperature.
基金the program for Changjiang Scholars and Innovative Research Team in University (No.IRT0547
文摘CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.
文摘This paper reports on the effects of film thickness and doping content on the optical and electrical properties of fluorine-doped tin oxide. Tin (Ⅱ) chloride dehydrate, ammonium fluoride dehydrate, ethanol and HC1 were used as the starting materials, dopant source, solvent and stabilizer, respectively. The doped films were deposited on a glass substrate at different concentrations varying between 0 and 5 wt% using an ultrasonic spray technique. The SnO2:F thin films were deposited at a 350 ℃ pending time (5, 15, 60 and 90 s). The average transmission was about 80%, and the films were thus transparent in the visible region. The optical energy gap of the doped films with 2.5 wt% F was found to increase from 3.47 to 3.89 eV with increasing film thickness, and increased after doping at 5 wt%. The decrease in the Urbach energy of the SnO2:F thin films indicated a decrease in the defects. The increase in the electrical conductivity of the films reached maximum values of 278.9 and 281.9 (Ω.cm)-1 for 2.5 and 5 wt% F, respectively, indicating that the films exhibited an n-type semiconducting nature. A systematic study on the influence of film thickness and doping content on the properties of SnO2:F thin films deposited by ultrasonic spray was reported.