One prominent cathode material utilized in commercial sodium-ion batteries is the O3-type NaNi_(0.5)Mn_(0.5)O_(2).The application of this material is hindered by multistage phase transitions and insufficient air stabi...One prominent cathode material utilized in commercial sodium-ion batteries is the O3-type NaNi_(0.5)Mn_(0.5)O_(2).The application of this material is hindered by multistage phase transitions and insufficient air stability.In this study,an innovative O3-type NaNi_(0.5)Mn_(0.5)O_(2),derived from Ni-MOFs (referred to as M-NNMO),has been developed as a cathode material for sodium-ion batteries.The M-NNMO cathode exhibits a discharge specific capacity of 124 mAh·g^(-1)at a rate of0.1C within 2.0 to 4.0 V.Furthermore,this material demonstrates an impressive capacity retention of 75%after undergoing 100 cycles.Complex phase transitions can be inhibited and ion diffusion rates can be increased simultaneously by Ni-MOFs through the enhancement of transition metal-oxygen bonding and the rise n Na layer gap,which are in charge of the remarkable performance improvement.Importantly,the enhanced stability of the M-NNMO transition metal layer based on the uniquestructural properties of Ni-MOFs in air stability tests.This work will provide theoretical guidance to design sodiumion battery cathode materials with superior performance.展开更多
Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Z...Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Zr0.5Ti0.5Al0.5O2 catalysts was evaluated using the simulated gases. The results show that ZTA samples exhibit higher specific surface area,larger pore volume and proper surface acidic amount and acidity in comparison with ZT. The results of the catalytic test indicate that Pt/ZT and Pt/ZTA catalysts exhibit excellent low-temperature catalytic activity and lower light-off temperatures of hydrocarbon,carbon monoxide and nitrogen oxides,especially better conversion for nitrogen oxides (NOx). The addition of Al2O3 into ZT enhanced the anti-aging property of Pt/ ZTA catalysts due to the excellent textural,structural,surface acidity and thermal stability.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52164029,52074099 and 52464033)Natural Science Foundation of Hainan Province(Nos.221RC585,821MS0782,221MS048 and 221RC 1072)+1 种基金Hainan Province Science and Technology Special Fund(Nos.ZDYF2022GXJS004 and ZDYF2021GXJS028)Scientific Research Foundation of Hainan Tropical Ocean University(No.RHDRC202112)
文摘One prominent cathode material utilized in commercial sodium-ion batteries is the O3-type NaNi_(0.5)Mn_(0.5)O_(2).The application of this material is hindered by multistage phase transitions and insufficient air stability.In this study,an innovative O3-type NaNi_(0.5)Mn_(0.5)O_(2),derived from Ni-MOFs (referred to as M-NNMO),has been developed as a cathode material for sodium-ion batteries.The M-NNMO cathode exhibits a discharge specific capacity of 124 mAh·g^(-1)at a rate of0.1C within 2.0 to 4.0 V.Furthermore,this material demonstrates an impressive capacity retention of 75%after undergoing 100 cycles.Complex phase transitions can be inhibited and ion diffusion rates can be increased simultaneously by Ni-MOFs through the enhancement of transition metal-oxygen bonding and the rise n Na layer gap,which are in charge of the remarkable performance improvement.Importantly,the enhanced stability of the M-NNMO transition metal layer based on the uniquestructural properties of Ni-MOFs in air stability tests.This work will provide theoretical guidance to design sodiumion battery cathode materials with superior performance.
文摘Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Zr0.5Ti0.5Al0.5O2 catalysts was evaluated using the simulated gases. The results show that ZTA samples exhibit higher specific surface area,larger pore volume and proper surface acidic amount and acidity in comparison with ZT. The results of the catalytic test indicate that Pt/ZT and Pt/ZTA catalysts exhibit excellent low-temperature catalytic activity and lower light-off temperatures of hydrocarbon,carbon monoxide and nitrogen oxides,especially better conversion for nitrogen oxides (NOx). The addition of Al2O3 into ZT enhanced the anti-aging property of Pt/ ZTA catalysts due to the excellent textural,structural,surface acidity and thermal stability.