期刊文献+
共找到477篇文章
< 1 2 24 >
每页显示 20 50 100
Impurity formation mechanism of silicon carbide crystals smelted by Acheson process 被引量:2
1
作者 Dong Feng Hong-qiang Ru +2 位作者 Xu-dong Luo Jie-gang You Ling Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第6期1367-1375,共9页
In order to further promote the application of SiC refractories in modern steel metallurgy,the occurrence forms and formation mechanism of impurities in SiC crystals smelted by Acheson process were investigated.The te... In order to further promote the application of SiC refractories in modern steel metallurgy,the occurrence forms and formation mechanism of impurities in SiC crystals smelted by Acheson process were investigated.The techniques of inductively coupled plasma-atomic emission spectrometry,X-ray diffraction,and scanning electron microscopy were combined to examine the types and occurrence forms of impurities in smelted SiC crystals.The results showed that the main impurities in the SiC are free Si,free C,oxides(CaO·Al_(2)O_(3)·2SiO_(2),3Al_(2)O_(3)·2SiO_(2),CaO·SiO_(2) and SiO_(2))and alloy phases(Fe_(x)Si_(y),Fe_(x)Si_(y)Ti_(z) and Fe_(x)Al_(y)Si_(z)).The formation process of impurities during the smelting of SiC can be described as follows:At high temperature,the SiO_(2) and Fe,Ti related oxide impurities present in the raw materials are reduced to Si,Fe,and Ti metal melts.After the reduction process,the free Si,Fe_(x)Si_(y) and Fe_(x)Si_(y)Ti_(z) are precipitated from the melt during cooling.Free Si primarily exists in aggregated form within the SiC crystal,while the alloy phase is predominantly found at the interface between SiC and free Si,with Fe_(x)Si_(y)Ti_(z) embedded within FexSiy.Towards the end of the cooling process,other impurity oxides such as Al_(2)O_(3),CaO,and some unreduced SiO_(2) solidify to form calcium-aluminum-silicate glass phases,predominantly located between SiC grains.The remaining C from the reaction is mainly dispersed as free C within the SiC crystal and at the interface between SiC and free Si. 展开更多
关键词 Impurity element Formation mechanism smelted SiC crystal SiC refractory Occurrence form
原文传递
Ilmenite Smelted by Oxygen-Enriched Top-Blown Smelting Reduction 被引量:6
2
作者 LI Hui-bin WANG Hua +2 位作者 QI Yi-long HU Jian-hang LI You-ling 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第2期7-13,共7页
Total ilmenite from Yunnan, China, difficult to smelt in blast furnace, was smelted by oxygen-enriched top-blown smelting reduction ironmaking technology. Much more details on smelting were discussed. Specifically, th... Total ilmenite from Yunnan, China, difficult to smelt in blast furnace, was smelted by oxygen-enriched top-blown smelting reduction ironmaking technology. Much more details on smelting were discussed. Specifically, the influence of reduction temperature, slag basicity and molar ratio of carbon to oxygen on the reduction quality level including iron recovery and titanium and sulfur contents in the pig iron produced in the experiment was investigated. Iron recovery rate could reach 95 % with titanium content below 0.05 % in pig iron produced, under the conditions of holding time of 30 min at 1 823 K, basicity of 1.1, carbon to oxygen molar ratio of 1.0 and oxygen enriched flow rate of 250 L/h. Oxidization potential of top-space of smelting reduction vessel and slag combination could create the driv ing force to partition phosphorous, titanium and silicon into the slag, which ensured low contents of the impurities involved above and carbon in pig iron. In addition, it avoided the generation of Ti(C,N) that could reduce interracial tension of slag, which induced the formation of foaming slag seriously. Furthermore, jam of chargings and bubble flooding would be triggered, resulting in deterioration of BF state, increase of iron loss and decline of desulfurization rate. 展开更多
关键词 smelting reduction ILMENITE iron recovery DESULFURIZATION
原文传递
Mixture of ilmenite and high phosphorus iron ore smelted by oxygen-enriched top-blown smelting reduction 被引量:3
3
作者 郈亚丽 卿山 +2 位作者 王华 施哲 李慧斌 《Journal of Central South University》 SCIE EI CAS 2012年第10期2760-2767,共8页
In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-ph... In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-phosphorus iron and ilmenite. The effect, which is related to basicity, reduction temperature, carbon-oxygen ratio and time of ventilated oxygen to iron recovery, dephosphorization rate, content of iron, phosphorus, sulfur and titanium in pig iron, was investigated in the experiment. The results show that an ideal outcome can be gained in condition of 6:4 ration on Mengqiao concentrate and Huimin iron ore, temperature of 1 500℃, basicity of 1.3, 1.0 on molar ration of carbon to oxygen, time of 10 min on blowing-oxygen. The outcome is that there is no foamy slag in generation, a good separation of slag and iron, iron recovery with 91.41%, content of phosphorus with 0.27% and tilanium content less than 0.001%, The atmosphere of strong oxidizing in the upper of reduction container and high potential of oxygen in the composition of slag in this technique bring phosphorus, titanium and silicon into slag, which ensures less content of impurity in pig iron. 展开更多
关键词 smelting reduction ILMENITE high phosphorus iron ore iron recovery DEPHOSPHORIZATION
在线阅读 下载PDF
Relative vacuum reduction innovative processes applied in primary magnesium production-Comprehensive analysis of thermodynamics,resource,energy flow,and carbon emission 被引量:1
4
作者 Xiaolong Li Tingan Zhang +3 位作者 Yan Liu Junhua Guo Jingzhong Xu Yuanyuan Liang 《Journal of Magnesium and Alloys》 2025年第7期3134-3149,共16页
Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industr... Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes. 展开更多
关键词 Magnesium smelting Relative vacuum reduction process THERMODYNAMICS Resource and energy flow Carbon emission
在线阅读 下载PDF
Standardized framework for assessing soil quality at antimony smelting site by considering microbial-induced resilience and heavy metal contamination 被引量:1
5
作者 Shasha Jiang Xiaoyu Deng +6 位作者 Liyuan Ma Hongmei Wang Xingjie Wang Liang Feng Feng Zhu Shengguo Xue Arif Mohammad 《Journal of Environmental Sciences》 2025年第2期306-320,共15页
Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sit... Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sites.This study developed a standardized framework for assessing soil quality by consideringmicrobial-induced resilience and heavymetal contamination at Xikuangshan antimony smelting site.The soil resilience index(SRI)and soil contamination index(SCI)were calculated byMinimum Data Set and geo-accumulation model,respectively.After standardized by a multi-criteria quantitative procedure of modified Nemerow’s pollution index(NPI),the integrated assessment of soil quality index(SQI),which is the minimumof SRINPI and SCINPI,was achieved.The results showed that Sb and As were the prominent metal(loid)pollutants,and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience.The primary limiting factors of SRI were Fungi in high andmiddle contaminated areas,and Skermanella in low contaminated area,suggesting that the weak soil resilience was caused by low specific microbial abundances.Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement.This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas. 展开更多
关键词 Antimony smelting site Soil resilience index(SRI) Soil contamination index(SCI) MICROORGANISMS Nemerow’s pollution index(NPI)
原文传递
Distribution and Fate of Arsenic in Copper Mining,Beneficiation and Smelting in China
6
作者 HAN Wei WANG Yujing NIE Jinglei 《有色金属(中英文)》 北大核心 2025年第10期1844-1853,共10页
Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across... Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across the copper mining,beneficiation,and smelting processes using a life-cycle approach,providing important insights for arsenic pollution prevention and the resource utilization of arsenic-bearing solid waste.The results show that the amount of As in waste rock,tailing and concentrate are 53483 t,86632 t,76162 t,respectively.After smelting treatment,the amount of arsenic in different types of solid waste,wastewater,waste gas and products are 76128 t,1 t,31 t and 2 t,respectively,and the proportion in arsenic sulfide slag is the highest(55%).The amount of emission to the environment is 32 t,accounting for only 0.04%of total amount.In the future,key considerations are to improve the resource utilization rate of arsenic-containing solid waste(tailing,smelting slag),especially arsenic sulfide slag,and to digest its environmental risk. 展开更多
关键词 arsenic contamination copper mining copper beneficiation copper smelting material flow
在线阅读 下载PDF
Behavior of high-arsenic copper feed mixture in suspension smelting processes
7
作者 Yu-jie CHEN Yan-jie LIANG +5 位作者 Hui LIU Pekka TASKINEN Ari JOKILAAKSO Zhun-qin DONG Zhong-bing WANG Tao CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第11期3886-3901,共16页
The suspension stage of copper flash smelting was examined by roasting a high arsenic copper smelting feed mixture at 500-900°C for 0-20 s in nitrogen and air atmospheres.The enrichment of copper,lead,zinc,arseni... The suspension stage of copper flash smelting was examined by roasting a high arsenic copper smelting feed mixture at 500-900°C for 0-20 s in nitrogen and air atmospheres.The enrichment of copper,lead,zinc,arsenic,and sulfur in the quenched calcine was determined via chemical analyses.Pyrite and chalcopyrite were the main minerals in the feed mixture,and about 55 wt.%of arsenic was in tennantite.The stability of the feed and the formation of S_(2) and SO_(2)during roasting were surveyed by thermal analysis combined with mass spectrometry.Selected pure impurity sulfides were studied for reference purposes.Results indicated that arsenic was released more easily in inert atmosphere compared to air,in which oxidation products of sulfides captured the released gaseous arsenic.Kinetics analyses showed that the third-order chemical reaction and three-dimensional diffusion models were found as the most suitable mechanism functions of arsenic volatilization in inert and air atmospheres,respectively. 展开更多
关键词 complex concentrates copper smelting flash smelting VOLATILIZATION kinetic modelling
在线阅读 下载PDF
Effect of slow-release phosphate on stabilization and long-term stability of Zn and Cd in soil
8
作者 Chu-xuan LI Shan-xin YUAN +7 位作者 Hai-feng LI Yong-ping LU Wei-chun YANG Wen-shun KE Lu TANG Chong-jian TANG William HARTLEY Sheng-guo XUE 《Transactions of Nonferrous Metals Society of China》 2025年第6期2091-2104,共14页
Slow-release phosphate materials were prepared by activating insoluble phosphate with organic acid to stabilize high concentrations of Cd and Zn in contaminated smelter soil.The results showed that oxalic acid(0.1 mol... Slow-release phosphate materials were prepared by activating insoluble phosphate with organic acid to stabilize high concentrations of Cd and Zn in contaminated smelter soil.The results showed that oxalic acid(0.1 mol/L)activated tricalcium phosphate(TO-0.1)provided the most efficient stabilization of Cd and Zn.After 30 d treatment,leaching concentrations of Cd and Zn in soil were decreased from 3.17 and 16.60 mg/L to 0.078 and 0.32 mg/L,respectively.The acid-soluble fractions of Cd and Zn were transformed into reducible,oxidizable,and residual fractions.Notably,As mobility in TO-0.1 treated soils did not increase.In addition,acid rain leaching and 150 d of natural aging revealed that the slow-release phosphate material provided long-term stability for the stabilization of Cd and Zn.This study verifies the potential application of slow-release phosphate materials for the remediation of heavy metal contaminated soil at smelting sites. 展开更多
关键词 smelting sites ZN CD PHOSPHATE slow-release long-term stability
在线阅读 下载PDF
Selective recovery of rare earth elements by smelting of magnets
9
作者 Venkata Lakshmi Borra Prasanta Jana +3 位作者 PPSahoo Prakash Venkatesan Mehmet Ali Recai Onal Chenna Rao Borra 《Journal of Rare Earths》 2025年第1期209-217,I0008,共10页
Rare earth elements(REEs)play a crucial role in many technologies from daily appliances in cell phones to more advanced wind turbines and electric cars.Permanent magnets account for a quarter of total global REEs prod... Rare earth elements(REEs)play a crucial role in many technologies from daily appliances in cell phones to more advanced wind turbines and electric cars.Permanent magnets account for a quarter of total global REEs production and have high recycling value.In this study,smelting process was used to selectively oxidize REEs in the permanent magnets by adding Fe_(2)O_(3).This separates REEs into a slag phase from an iron-rich metallic phase.B_(2)O_(3) was also added to the system as a flux to lower the slag melting temperature.This minimizes REEs loss to the metallic phase and allows a more efficient phase separation.The effect of flux and oxidizing agent addition was investigated on both regular and cerium-rich NdFeB(NdCeFeB)magnets.At 1350℃and for 1 h,the slag phase was successfully separated from the metallic phase with the addition of 0.8 stoichiometric amount of Fe_(2)O_(3) and 40 wt%of B_(2)O_(3).Scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX)analysis reveals that REEs in the magnet do not migrate to the metal phase while the REE-rich slag phase contains almost no iron.After the selective removal of iron into the metallic phase,REEs are recovered from the slag phase through an acid leaching process allowing>99%of REEs recovery.Boron in the magnet can also be recovered as useful boric acid by evaporation and crystallisation technique.The proposed process in this study is reagent and energy-efficient with almost complete valorisation of both NdCeFeB and NdFeB magnets. 展开更多
关键词 RECYCLING Rare earth elements NdFeBmagnets SMELTING LEACHING
原文传递
Rising Bubbles and Ensuing Wake Effects in Bottom-Blown Copper Smelters
10
作者 Zhi Yang Xiaohui Zhang +3 位作者 Xinting Tong Yutang Zhao Teng Xia Hua Wang 《Fluid Dynamics & Materials Processing》 2025年第5期1133-1150,共18页
In bottom-blown copper smelting processes,oxygen-enriched air is typically injected into the melt through a lance,generating bubbles that ascend and agitate the melt,enhancing mass,momentum,and heat transfer within th... In bottom-blown copper smelting processes,oxygen-enriched air is typically injected into the melt through a lance,generating bubbles that ascend and agitate the melt,enhancing mass,momentum,and heat transfer within the furnace.The melt’s viscosity,which varies across reaction stages,and the operating conditions influence bubble size and dynamics.This study investigates the interplay between melt viscosity and bubble diameter on bubble motion using numerical simulations and experiments.In particular,the volume of fluid(VOF)method andΩ-identification technique were employed to analyze bubble velocity,deformation,trajectories,and wake characteristics.The results showed that bubble ascent velocity increases with bubble size and decreases in viscosity,though viscosity variations minimally affect the maximum velocity.Larger bubbles or those in less viscous melts exhibit greater deformation.Bubbles ascend primarily in straight trajectories with minor lateral oscillations regardless of viscosity.In terms of wake dynamics,vortex sizes grow as viscosity decreases,with bottom-formed vortices expanding significantly with increasing bubble size,while lateral vortices are less influenced. 展开更多
关键词 Bottom-blow smelting deformation characteristics motion trajectory vortex identification numerical simulation
在线阅读 下载PDF
Impact of CO_(2)as an oxidant on the decarburization and chromium retention and an approach for CO_(2)recycling
11
作者 Yun Zhou Wenzhi Xia +1 位作者 Guangsheng Wei Haichuan Wang 《Chinese Journal of Chemical Engineering》 2025年第1期203-206,共4页
This study explores the unique role of CO_(2)as an oxidant in stainless steel smelting,focusing on its effectiveness in decarbonization and chromium retention.The research begins by theoretically demonstrating that al... This study explores the unique role of CO_(2)as an oxidant in stainless steel smelting,focusing on its effectiveness in decarbonization and chromium retention.The research begins by theoretically demonstrating that although the introduction of CO_(2)increases the CO partial pressure in the reaction system,the decarburization and chromium(Cr)retention capabilities of CO_(2)can still be stably maintained through the rational adjustment of the molten steel composition,temperature,and inert gas proportions.Further experimental findings indicate that chromium does not exhibit significant oxidation losses when the carbon(C)content exceeds 1.0%(mass).Finally,a novel CO_(2)recovery and utilization approach is proposed,integrating CO_(2)capture from smelting flue gas and recycling it for smelting,reducing O_(2)consumption and energy costs.This innovative process,compatible with existing smelting plants,presents a promising pathway towards carbon neutrality in the iron and steel industry,bridging theoretical insights with practical applications. 展开更多
关键词 Carbon dioxide Oxidation DECARBURIZATION Chromium retention Chemical reaction Stainless steel smelting
在线阅读 下载PDF
Properties evaluation of DRI smelting slag for molten iron production:viscosity and sulfide capacity dependence on binary basicity
12
作者 Wen-guo Liu Zhuo-gang Pang +1 位作者 Jian-lu Zheng Hai-bin Zuo 《Journal of Iron and Steel Research International》 2025年第11期4095-4107,共13页
The properties of direct reduced iron(DRI)smelting slag are important in the DRI melting process for molten iron production to ensure the slag-iron separation and quality of molten iron.The influence of binary basicit... The properties of direct reduced iron(DRI)smelting slag are important in the DRI melting process for molten iron production to ensure the slag-iron separation and quality of molten iron.The influence of binary basicity on the viscosity and sulfide capacity of CaO-SiO_(2)-MgO-Al_(2)O_(3)-FeO slag was investigated by the high-temperature experiments,structural analysis and thermodynamic calculation.The viscosity of the slag decreased rapidly with an increase in basicity from 0.4 to 0.8,and this trend became slow as the basicity further increased to 1.2.For the acidic slag with basicity of 0.4 and 0.6,the viscosity at 1500℃ was higher than 0.6 Pa s,which was harmful for the fluidity of slag melt.The slags with basicity of 0.8,1.0 and 1.2 at 1500℃ showed the low viscosity of less than 0.6 Pa s.For the basic slag with basicity of 1.0 and 1.2,the rapid precipitation of melilite led to the abrupt increase behavior of the viscosity,and the acidic slag showed the gentle temperature-viscosity curves.The Raman analysis revealed that the conversion from Q^(3) to Q^(2),Q^(1) and Q^(0) mainly occurred with the basicity increasing from 0.4 to 0.8,and the conversion from Q^(2) to Q^(1) and Q^(0) was dominant with further increase in basicity to 1.2,decreasing the degree of polymerization.The sulfide capacity was improved with the increasing basicity due to the increase in O^(2-)ions,and CaS could be formed dominantly for S^(2-)stabilization in present slag.The sulfur partition ratio was derived from sulfide capacity,and the values of sulfur partition ratio at basicity of 0.4 and 0.6 were much smaller than those at basicity of 0.8,1.0 and 1.2,indicating a weak desulfurization ability of the slag with a low basicity. 展开更多
关键词 Direct reduced iron Smelting slag BASICITY Sulfide capacity VISCOSITY
原文传递
Separation and enrichment of valuable elements from slag containing rare earth,niobium and titanium via Fe-Si bath smelting reduction
13
作者 Xing-li Jia Bo Zhang +2 位作者 Lei Cui Cheng-jun Liu Mao-fa Jiang 《Journal of Iron and Steel Research International》 2025年第7期1990-2000,共11页
To recover the valuable elements in Bayan Obo tailings,Fe-Si bath smelting reduction was adopted to separate and enrich rare earth elements(REE),niobium and titanium from the REE-Nb-Ti-containing slag.The reduction re... To recover the valuable elements in Bayan Obo tailings,Fe-Si bath smelting reduction was adopted to separate and enrich rare earth elements(REE),niobium and titanium from the REE-Nb-Ti-containing slag.The reduction reaction process of the Fe-Si bath and the migration behavior of valuable elements in the solidification and crystallization process of silicothermic reduction tailings were investigated,and a treatment method for efficiently separating and enriching REE,Nb and Ti was explored.Thermodynamic analysis indicated that at 1600℃,with a 6 wt.%addition of Si as the reducing agent,the niobium oxide in the REE-Nb-Ti-containing slag could be selectively reduced to metallic Nb.In the Fe-Si bath reduction process,the Nb mass fraction in the metal phase increased with prolonged reaction time,peaking at 2.77%,while the Ti mass fraction consistently stayed below 0.12%.Lowering the w(CaO)/w(SiO_(2))enhanced the migration of Nb from slag to metal phase and reduced the Ti impurities.During solidification and crystallization,a significant quantity of perovskite precipitated from reduction tailings,with the REE dissolving into this perovskite.By adjusting the w(CaO)/w(SiO_(2))in tailings to 1.2-1.9 and maintaining a temperature of 1100℃for 4 h,the perovskite area fraction in the final slag could exceed 37%.Finally,a method was proposed to separate and enrich valuable elements in REE-Nb-Ti-containing slags via Fe-Si bath smelting reduction and crystallization control. 展开更多
关键词 Bayan Obo tailing Silicothermic reduction NIOBIUM Titanium Rare earth Bath smelting reduction
原文传递
Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath
14
作者 Teng Xia Xiaohui Zhang +4 位作者 Ding Ma Zhi Yang Xinting Tong Yutang Zhao Hua Wang 《Fluid Dynamics & Materials Processing》 2025年第1期121-140,共20页
Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphas... Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphaseflow within the furnace.Understanding the flow structure and temperature distribution in this setup is crucial foroptimizing production.In this study,gas-liquid interactions,and temperature profiles under varying air-injectionconditions are examined by means of numerical simulation for a 3.2 m×20 m furnace.The results indicate that thehigh-velocity regions are essentially distributed near the lance within the reaction region and the flue gas outlet,while low-velocity regions are located close to the furnace walls on both side of the reaction region.Dead regionsappear in the sedimentation region,with gas velocities surpassing those of the molten phase.As the injection rateincreases from 0.50 to 0.80 Nm3/s,the stabilization time of the average liquid surface velocity decreases from 2.6 sto 1.9 s,exhibiting a similar trend to the gas holdup.During stabilization,the average liquid surface velocity risesfrom 0.505 to 0.702 m/s.The average turbulent kinetic energy(TKE)of the fluid in the molten bath increases from0.095 to 0.162 m^(2)/s^(2).The proportion of the area distribution with TKE greater than 0.10 m^(2)/s^(2) and the gas holdupat steady state both rise with an increase in the injection quantity.The maximum splashing height of the melt growsfrom approximately 0.756 to 1.154 m,with the affected area expanding from 14.239 to 20.498 m^(2).Under differentworking conditions with varying injection quantities,the average temperature changes in melt zone and flue gaszone of the furnace are small.The temperature in the melt and in the flue-gas zone spans the interval 1200℃–1257℃,and 1073℃–1121℃,respectively.The temperature distribution of the melt and flue gas reveals a patterncharacterized by elevated temperatures in the reaction zone,gradually transitioning to lower temperatures in thesedimentation region. 展开更多
关键词 Copper smelting bottom-blown melting furnace flow characteristics temperature distribution numerical simulation
在线阅读 下载PDF
Study on hydrogen-based reduction of boron-bearing iron concentrate and separation of slag-iron at low temperatures
15
作者 LI Yu GUO Zhancheng 《Baosteel Technical Research》 2025年第2期13-22,共10页
The hydrogen-based reduction and electric smelting technology is a green and low-carbon process for treating low-grade ore and complex symbiotic iron ore.In this study,the hydrogen-based reduction of boron-bearing iro... The hydrogen-based reduction and electric smelting technology is a green and low-carbon process for treating low-grade ore and complex symbiotic iron ore.In this study,the hydrogen-based reduction of boron-bearing iron concentrate and the low-temperature separation compared with the high-temperature melting separation of slag and iron from a boron-bearing iron concentrate were studied.The metallization rate of the boron-bearing iron concentrate reached 99.63%after hydrogen-based reduction at 1050℃,and the metallic iron was interwoven with olivine(Mg_(2)SiO_(4))in the reduced ore.In addition,the high-temperature melting separation of iron and slag could be accomplished at 1550℃for 60 min,where boron was mainly distributed in the form of a glass phase in the slag with a mass fraction of B_(2)O_(3)of 22.69%,and 0.35%of boron(mass fraction)was melted into liquid iron.By contrast,iron and slag were efficiently separated at a lower temperature(1300℃)for 10 min and enhanced by super-gravity.Almost all the boron content was enriched into a suanite phase in the slag with a considerably high mass fraction of B_(2)O_(3)(35.61%)and a high recovery ratio(99.37%),and the mass fraction of boron decreased to 0.15%in iron.Compared with high-temperature melting separation,low-temperature separation combined with hydrogen-based reduction greatly improved the enrichment of boron in slag and prevented the melting of boron into iron. 展开更多
关键词 boron-bearing iron concentrate hydrogen-based reduction electric smelting low-temperature separ-ation boron enrichment
在线阅读 下载PDF
Direct and sustainable stainless steelmaking from nickel and chromite ores by hydrogen plasma smelting reduction
16
作者 Abrar Taimullah Izzul Islam +5 位作者 Dale Tandersen Ulil Amri Nizhamul Taufiq Hidayat Yerbolat Makhambetov Yopi Hendrawan Zulfiadi Zulhan 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1881-1892,共12页
Stainless steel,known for its exceptional properties and diverse applications,conventionally requires a multistage process that generates considerable CO_(2) emissions by using fossil-based carbon reductants.This stud... Stainless steel,known for its exceptional properties and diverse applications,conventionally requires a multistage process that generates considerable CO_(2) emissions by using fossil-based carbon reductants.This study investigated hydrogen plasma smelting reduction as a novel,sustainable,and efficient method for producing stainless steel directly from lateritic nickel and chromite ores.The research aimed to examine the effect of ore proportion on AISI 300 series stainless steel production and assess the reduction process over time through thermochemical calculations and experimental studies.Results showed that increasing the proportion of chromite ore in the feed raises Cr content and reduces Ni content in metals while increasing Cr_(2)O_(3) and Al_(2)O_(3) content in oxides.A briquette comprising 30wt%chromite ore and 70wt%calcined nickel ore yields better results for AISI 300 stainless steel,with Fe,Cr,Ni,and Si content of 62.95wt%,19.37wt%,11.83wt%,and 0.72wt%,respectively,after 180 s of hydrogen plasma exposure.Nearly all NiO compounds are converted into Ni after 60 s of smelting reduction,whereas FeO compounds are almost fully converted into Fe after 120 s of smelting reduction.AISI 300 series stainless steel is successfully produced after 120 s of reduction,achieving Fe,Cr,Ni,and Si content of 64.36wt%,21.92wt%,10.08wt%,and 0.61wt%,respectively.Process optimization remains promising because the Cr_(2)O_(3) content in the slag is still relatively high at 15.52wt%.This ultrafast and direct production method holds considerable potential to transform stainless steel production by reducing environmental impact and enhancing process efficiency.Specifically,the method eliminates the use of an argon oxygen decarburization converter and vacuum oxygen decarburization in stainless steelmaking. 展开更多
关键词 hydrogen plasma smelting reduction stainless steel nickel ore chromite ore SUSTAINABLE
在线阅读 下载PDF
Assessment of internal exposure risk from metals pollution of occupational and non-occupational populations around a non-ferrous metal smelting plant
17
作者 Yingjun Wu Mengdie Qi +2 位作者 Hang Yu Guiying Li Taicheng An 《Journal of Environmental Sciences》 2025年第1期62-73,共12页
Non-ferrous metal smelting poses significant risks to public health.Specifically,the copper smelting process releases arsenic,a semi-volatile metalloid,which poses an emerging exposure risk to both workers and nearby ... Non-ferrous metal smelting poses significant risks to public health.Specifically,the copper smelting process releases arsenic,a semi-volatile metalloid,which poses an emerging exposure risk to both workers and nearby residents.To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting,we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks.Results showed that zinc and copper(485.38 and 14.00μg/L),and arsenic,lead,cadmium,vanadium,tin and antimony(46.80,6.82,2.17,0.40,0.44 and 0.23μg/L,respectively)in workers(n=179)were significantly higher compared to controls(n=168),while Zinc,tin and antimony(412.10,0.51 and 0.15μg/L,respectively)of residents were significantly higher than controls.Additionally,workers had a higher monomethyl arsenic percentage(MMA%),showing lower arsenic methylation capacity.Source appointment analysis identified arsenic,lead,cadmium,antimony,tin and thallium as co-exposure metal(loid)s from copper smelting,positively relating to the age of workers.The hazard index(HI)of workers exceeded 1.0,while residents and control were approximately at 1.0.Besides,all three populations had accumulated cancer risks exceeding 1.0×10^(-4),and arsenite(AsIII)was the main contributor to the variation of workers and residents.Furthermore,residents living closer to the smelting plant had higher health risks.This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations,providing valuable insights for pollution control in non-ferrous metal smelting. 展开更多
关键词 Arsenic metabolites Metal(loid)s Non-ferrous metal smelting Human biomonitoring Exposure URINE
原文传递
Effect of slag basicity on semi-molten smelting process of saprolitic and limonitic laterite ores
18
作者 Yu-xiao XUE Jian-bo ZHAO +1 位作者 Zhi-xiong YOU Xue-wei LV 《Transactions of Nonferrous Metals Society of China》 2025年第5期1679-1690,共12页
The semi-molten smelting process of a mixture of saprolitic and limonitic laterite ores was systematically investigated and the effect of slag basicity was deeply analyzed.The results indicate that the slag system can... The semi-molten smelting process of a mixture of saprolitic and limonitic laterite ores was systematically investigated and the effect of slag basicity was deeply analyzed.The results indicate that the slag system can be located in the liquidus region of low melting-point diopside(CaMgSi_(2)O_(6))when slag basicity is kept at 0.3 and limonitic laterite mass fraction is not less than 10%.When the reduction temperature,C/O mass ratio,limonitic laterite mass fraction and slag basicity are kept at the optimum values of 1300℃,0.86,20%and 0.3,respectively,ferronickel products with grades 6.42%Ni and 86.99%Fe are prepared.The recovery rates of Ni and Fe reach 88.60%and 72.25%,respectively. 展开更多
关键词 ferronickel saprolitic laterite ore limonitic laterite ore slag basicity semi-molten smelting process
在线阅读 下载PDF
Smelting separation behaviors of various reduced vanadium titanomagnetite pellets
19
作者 Zheng-qi GUO Xing CHEN +6 位作者 Yue SHI De-qing ZHU Jian PAN Cong-cong YANG Si-wei LI Ji-wei XU Xin WANG 《Transactions of Nonferrous Metals Society of China》 2025年第11期3869-3885,共17页
The melting and separation behavior of vanadium-titanium magnetite pellets directed at an efficient extraction of vanadium and titanium was systematically investigated.Applying FactSage simulations and experiments,the... The melting and separation behavior of vanadium-titanium magnetite pellets directed at an efficient extraction of vanadium and titanium was systematically investigated.Applying FactSage simulations and experiments,the smelting separation of three pre-reduced pellets from different regions was analyzed.The simulations demonstrate that FeTi2O5 is converted to TiC at low temperatures,necessitating suppression of this step.Experiments under optimized conditions(1590-1690°C,20-25 min,2%coke,basicity 0.4-0.6,and 3.0%-6.0%MgO)yield iron grade of 92.35%-95.06%,titanium grade of 34.37%-39.89%,and vanadium grade of 0.56%-1.52%,with recoveries of 99.52%-99.60%,94.08%-98.96%,and 92.63%-94.38%for iron,titanium and vanadium,respectively.The titanium in the slag,primarily in the form of anosovite,is suitable for sulfuric acid-based titanium white production.An increase in basicity,MgO content,and pellet metallization serves to improve vanadium recovery in melted iron but lowers the titanium grade in the slag.The overall process effectively utilizes vanadium and titanium resources under optimized conditions. 展开更多
关键词 vanadium titanomagnetite pellet pre-reduction smelting separation titanium slag utilization
在线阅读 下载PDF
Recovery of polymetallic elements from cyanide tailings via reduction smelting
20
作者 Gong-hao LI Fen JIAO +3 位作者 Chen LI Si-yu GU Shi-yang LIU Xin WEI 《Transactions of Nonferrous Metals Society of China》 2025年第3期975-989,共15页
A process for treating cyanide tailings was proposed.The process essentially implicates reduction smelting which involves volatilizing silver,lead,and zinc in the cyanide tailings at high temperatures.Meanwhile,gold a... A process for treating cyanide tailings was proposed.The process essentially implicates reduction smelting which involves volatilizing silver,lead,and zinc in the cyanide tailings at high temperatures.Meanwhile,gold and copper combine with the reduced iron to form a metal phase,allowing for the simultaneous recovery of polymetallic elements.The experimental results indicate that the process works optimally with a coke powder of 7.5 wt.%,an alkalinity of 1.0,a melting temperature of 1450℃,and a melting time of 60 min.Under these conditions,more than 99% of gold,77% of copper and 94% of iron are incorporated into pig iron.In the meantime,the volatilization rate of silver exceeds 90%,while lead and zinc are essentially completely volatilized.The primary component of the by-product smelting slag is akermanite,which exhibits lower leaching toxicity than the national standard and belongs to general solid waste.Additionally,taking the trapping process of iron to copper as a case study,the mechanism of iron trapping is methodically examined and divided into three processes:smelting reduction,migration capture,and condensation deposition. 展开更多
关键词 cyanide tailings gold tailings reduction smelting valuable element recovery
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部