Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium up...Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium uptake of peppers at Jiangna Town, Yanshan County, Yunnan Province in 2011. The results showed that the dry matter accumulation in dried pepper plant, pepper yield, nitrogen, phosphorus, potassium uptake in peppers were significantly increased in all the fertilizer treat- ments, compared with those in control (no fertilizer). Compared with conventional fertilization, balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer significantly increased dried pepper economic output by 20.94%, 17.5% and 14.54%, nitrogen uptake in dried peppers by 21.53%,18.46% and 13.19%, phosphorus uptake in dried peppers by 14.08%, 15.76% and 10.44%, potassium uptake in dried peppers by 22.66%, 15.73% and 16.28%; they also in- creased nitrogen and potassium use efficiency, but reduced potassium use efficiency due to the increased potassium addition. In treatments with balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer, the nitrogen utiliza- tion was 5.84%, 7.14% and 8.33% higher and the phosphorus utilization was 3.32%, 3.27% and 2.47% higher than those in treatment with conventional fertiliza- tion. In addition, the nitrogen application could be reduced by 20%-50% by bal- anced fertilization and the two slow-release fertilizers, thereby reducing environmen- tal pollution. Slow-release fertilizers could also reduce the frequency of fertilization and labor costs.展开更多
ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment fr...ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment friendly fertilizer was explored. ResultThe results show that compared with urea treatment, slow-release nitrogen fertilizer treatments could reduce nitrate nitrogen content and leaching amount in soils. Compared with PCU30 and IU treatments, the PCU60 treatment became more efficient in reducing nitrate content and leaching amount in 0-90 cm soil layer. ConclusionIn summary, slow-release nitrogen fertilizer, which can reduce soil nitrate content and leaching losses, is a kind of novel fertilizer with high environmental benefit and promising application.展开更多
Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplantin...Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.展开更多
[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six differen...[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.展开更多
Oxamide is a potential slow-release nitrogen(N)fertilizer,especially under waterlogged conditions,due to its low solubility in water and the slow-release of ammonium by soil amidases.To investigate the effects of oxam...Oxamide is a potential slow-release nitrogen(N)fertilizer,especially under waterlogged conditions,due to its low solubility in water and the slow-release of ammonium by soil amidases.To investigate the effects of oxamide granules(2.00-2.38 mm in diameter)as a single basal fertilizer(180 or 144 kg N ha^(-1))on rice growth,soil properties,and N use efficiency in terms of N recovery efficiency(NRE),we conducted field experiments on two different types of paddy soils over two rice-growing seasons.Results showed that the fertilization effects of oxamide granules varied between the two types of paddy soils.In the red clayey paddy soil,the grain yields for both rice-growing seasons were high with a significantly higher NRE in the oxamide treatment than in the urea treatment.However,in the alluvial sandy paddy soil,the grain yields in the oxamide treatment were slightly lower than those in the urea treatment.Furthermore,oxamide produced little improvement in NRE in the alluvial sandy paddy soil.Soil incubation experiments over 98 d were also carried out to evaluate the factors affecting the N release behavior of oxamide granules in the two types of paddy soils.We found that the amidase activity was higher and,therefore,the oxamide hydrolysis rate was faster in the alluvial sandy paddy soil,which had a higher soil pH value and organic matter content,compared to the red clayey paddy soil.The faster N release and the longer growth period resulted in a mismatch between N supply by oxamide and rice demand,which,in turn,led to little improvement in NRE and a decreased grain yield in the alluvial sandy paddy soil,especially in the reduced oxamide treatment.These results could help select the appropriate size of oxamide granules for use as a slow-release N fertilizer depending on the soil properties and growth period of rice.展开更多
Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems.However,nitrogen removal efficiency is usually limited due to the low carbon/nitrogen...Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems.However,nitrogen removal efficiency is usually limited due to the low carbon/nitrogen(C/N) ratio.A common solution is to add external carbon sources,but amount of liquid is difficult to determine.Therefore,a combined wood-chip-framework substrate(with wood,slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem.Results show that the removal rate of ammonia nitrogen(NH_4~+-N),total nitrogen(TN) and chemical oxygen demand(COD) could reach 37.5%-85%,57.4%-86%,32.4%-78%,respectively,indicating the combined substrate could diffuse sufficient oxygen for the nitrification process(slag and gravel zone) and provide carbon source for denitrification process(wood-chip zone).The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip,respectively.Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process,while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process.This study provides a new idea for wetland treatment of high-strength nitrogen wastewater.展开更多
Application of slow-release fertilizer(SF)is a nutrient-management measure aimed at improving maize nutrient use and yield and saving labor cost.One-time application of SF at sowing usually results in nutrient deficie...Application of slow-release fertilizer(SF)is a nutrient-management measure aimed at improving maize nutrient use and yield and saving labor cost.One-time application of SF at sowing usually results in nutrient deficiency during the post-silking stage,owing to the long growth period of spring maize.This study was conducted to investigate the effects on spring maize of SF application stage(zero,three-,and six-leaf stages,designated as SF0,SF3,and SF6,respectively)on grain yield,total soil rhizosphere nitrogen(N)content,and root activity,in comparison with the conventional fertilization mode(CF,application of compound fertilizer at sowing time,and topdressing urea at six-leaf and tasseling stages)at the same fertilization level as the control.Compared with no fertilization(F0)and CF,SF increased grain number and weight.The maize cultivars Suyu 30(SY30)and Jiangyu 877(JY877)produced the highest grain yield and net return under SF6 treatment over the three years.SF6 increased enzymatic activities including oxidoreductase,hydrolase,transferase,and lyase in rhizosphere soil at silking(R1)and milking stages(R3).SF6 increased the total N contents of rhizosphere soil by 7.1%at R1 and 9.2%R3 stages compared with SF0.The activities of antioxidant enzymes in roots were increased under SF6 treatments at R1and R3.The mean root activities of SF0,SF3,and SF6 increased by 7.1%,12.8%,and 20.5%compared with CF at R1 and by 8.8%,13.0%,and 23.5%at R3.Delaying the application time of SF could increase grain yield by increasing total N content of rhizosphere soil,delaying root senescence,and increasing root activity at the late reproductive stage.Applying SF at the six-leaf stage is recommended as an effective fertilization strategy for the sustainable production of spring maize in southern China.展开更多
Objective: To observe the effect of slow-released morphine tablets by rectum in treating the patients of moderate to severe cancer pain with server nausea and vomiting or dysphagia. Methods: 54 cases of cancer patient...Objective: To observe the effect of slow-released morphine tablets by rectum in treating the patients of moderate to severe cancer pain with server nausea and vomiting or dysphagia. Methods: 54 cases of cancer patients with server nau- sea and vomiting symptoms or dysphagia were treated with slow-released morphine tablets by rectum, 30-90 mg/time, once every 12 hours. The drug dose was titrated by degree of pain, and the effects and adverse effects were observed. Results: The total effective rate was 81.48%, complete response rate was 51.85% (28/54), and the partial response rate was 29.63% (16/54); there were no obvious toxicities, and the common adverse symptoms included nausea (16.7%) and vomiting (9.3%). Conclusion: The treatment of slow-released morphine tablet by rectum could effectively control cancer pain, the adverse effects were slight than that by mouth. It is safe and effective to be worthy of the adhibition in clinic.展开更多
After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed,...After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed, taking the shape of Nitrogen slow-release fertilizers, doing the dynamic bioleaching test by the method of Artificial rainfall simulation, researching the slow-release characteristic, water retention. When the mass ratio of the wet sludge whose water content is 82.5%: bentonite: corrupt and broken straw: urea is 62.5: 12.5: 12.5: 12.5, drip washing the 10g Nitrogen slow-release fertilizers by the 80ml distilled water after 48h, the residue rate of urea is 29.63%; Under the room temperature of 25 ℃, 77%RH, moisture evaporate 46.32% after 60 h. The results demonstrate that the slow-release fertilizer has a good release-effect of nitrogen and water conservation effect. It provides the basic for the development and application of the sewage in the aspect of Nitrogen slow-release fertilizers.展开更多
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap...[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.展开更多
Slow-release non-protein nitrogen feed has a large market demand. It has a long research history, but its production technology needs further improvement in order to realize the industrial production of slow-release n...Slow-release non-protein nitrogen feed has a large market demand. It has a long research history, but its production technology needs further improvement in order to realize the industrial production of slow-release non-protein nitrogen extruded feed. By designing the best formula and using chelating and emulsifying process, the slow-release non-protein nitrogen extruded feed additives were produced. This product increases milk yield and improves milk quality, thus increasing economic efficiency.展开更多
Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulc...Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.展开更多
The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e...The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.展开更多
Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N...Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N response makes it difficult to predict and quantify the effect of water deficit on crop N status.The nitrogen nutrition index(NNI)has been widely used to accurately diagnose crop N status and to evaluate the effectiveness of N application.The decline of NNI under water-limiting conditions has been documented,although the underlying mechanism governing this decline is not fully understood.This study aimed to elucidate the reason for the decline of NNI under waterlimiting conditions and to provide insights into the accurate utilization of NNI for assessing crop N status under different water-N interaction treatments.Rainout shelter experiments were conducted over three growing seasons from 2018 to 2021 under different N(75 and 225 kg N ha^(-1),low N and high N)and water(120 to 510 mm,W0 to W3)co-limitation treatments.Plant N accumulation,shoot biomass(SB),plant N concentration(%N),soil nitrate-N content,actual evapotranspiration(ET_a),and yield were recorded at the stem elongation,booting,anthesis and grain filling stages.Compared to W0,W1 to W3 treatments exhibited NNI values that were greater by 10.2 to 20.5%,12.6to 24.8%,14 to 24.8%,and 16.8 to 24.8%at stem elongation,booting,anthesis,and grain filling,respectively,across the 2018-2021 seasons.This decline in NNI under water-limiting conditions stemmed from two main factors.First,reduced ET_(a) and SB led to a greater critical N concentration(%N_(c))under water-limiting conditions,which contributed to the decline in NNI primarily under high N conditions.Second,changes in plant%N played a more significant role under low N conditions.Plant N accumulation exhibited a positive allometric relationship with SB and a negative relationship with soil nitrate-N content under water-limiting conditions,indicating co-regulation by SB and the soil nitrate-N content.However,this regulation was influenced by water availability.Plant N accumulation sourced from the soil nitrate-N content reflects soil N availability.Greater soil water availability facilitated greater absorption of soil nitrate-N into the plants,leading to a positive correlation between plant N accumulation and ET_(a)across the different water-N interaction treatments.Therefore,considering the impact of soil water availability is crucial when assessing soil N availability under water-limiting conditions.The findings of this study provide valuable insights into the factors contributing to the decline in NNI among different water-N interaction treatments and can contribute to the more accurate utilization of NNI for assessing winter wheat N status.展开更多
The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields ...The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration.展开更多
The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium rad...The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium radiation in the visible range using a shock tube was studied.Experiments were conducted with a shock velocity of 4.7 km/s,using nitrogen at a pressure of 20 Pa.To address measurement difficulties associated with weak radiation,a special square section shock tube with a side length of 380 mm was utilized.A high-speed camera characterized the shock wave’s morphology,and a spectrograph and a monochromator captured the radiation.The spectra were analyzed,and the numerical spectra were compared with experimental results,showing a close match.Temperature changes behind the shock wave were obtained and compared with numerical predictions.The findings indicate that the vibrational temperatures are overestimated,while the vibrational relaxation time is likely underestimated,due to the oversimplified portrayals of the non-equilibrium relaxation process in the models.Additionally,both experimental and simulated time-resolved profiles of radiation intensity at specific wavelengths were analyzed.The gathered data aims to enhance computational fluid dynamics codes and radiation models,improving their predictive accuracy.展开更多
Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as...Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.展开更多
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept...In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.展开更多
The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer pla...The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer plays a key rolein improving soil quality and stabilizing maize yields, but few studies have compared different substitution rates. Afield study was carried out in 2021 and 2022, based on a long-term trial initiated in 2016, which included five organicfertilizer N substitution rates with equal inputs of 200 kg N ha^(–1): 0% organic fertilizer(T1, 100% inorganic fertilizer),50.0% organic+50.0% inorganic fertilizer(T2), 37.5% organic+62.5% inorganic fertilizer(T3), 25.0% organic+75.0%inorganic fertilizer(T4), and 12.5% organic+87.5% inorganic fertilizer(T5), as well as a no fertilizer control(T6). Theresults of the two years showed that T3 and T1 had the highest grain yield and biomass, respectively, and there wasno significant difference between T1 and T3. Compared with T1, the 12.5, 25.0, 37.5, and 50.0% substitution rates in T5, T4, T3, and T2 significantly reduced total nitrogen losses(NH_(3), N_(2)O) by 8.3, 16.1, 18.7, and 27.0%, respectively.Nitrogen use efficiency(NUE) was higher in T5, T3, and T1, and there were no significant differences among them.Organic fertilizer substitution directly reduced NH_(3)volatilization and N_(2)O emission from farmland by lowering theammonium nitrogen and alkali-dissolved N contents and by increasing soil moisture. These substitution treatmentsreduced N_(2)O emissions indirectly by regulating the abundances of AOB and nirK-harboring genes by promotingsoil moisture. Specifically, the 37.5% organic fertilizer substitution reduces NH_(3)volatilization and N_(2)O emission from farmland by reducing the ammonium nitrogen and alkali-dissolved N contents and increasing moisture, which negatively regulate the abundance of AOB and nir K-harboring genes to reduce N_(2)O emissions indirectly in rainfed maize fields on the Loess Plateau of China.展开更多
To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturin...To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.展开更多
基金Supported by Special Fund from Ministry of Agriculture for Scientific Research(200903025-05)~~
文摘Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium uptake of peppers at Jiangna Town, Yanshan County, Yunnan Province in 2011. The results showed that the dry matter accumulation in dried pepper plant, pepper yield, nitrogen, phosphorus, potassium uptake in peppers were significantly increased in all the fertilizer treat- ments, compared with those in control (no fertilizer). Compared with conventional fertilization, balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer significantly increased dried pepper economic output by 20.94%, 17.5% and 14.54%, nitrogen uptake in dried peppers by 21.53%,18.46% and 13.19%, phosphorus uptake in dried peppers by 14.08%, 15.76% and 10.44%, potassium uptake in dried peppers by 22.66%, 15.73% and 16.28%; they also in- creased nitrogen and potassium use efficiency, but reduced potassium use efficiency due to the increased potassium addition. In treatments with balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer, the nitrogen utiliza- tion was 5.84%, 7.14% and 8.33% higher and the phosphorus utilization was 3.32%, 3.27% and 2.47% higher than those in treatment with conventional fertiliza- tion. In addition, the nitrogen application could be reduced by 20%-50% by bal- anced fertilization and the two slow-release fertilizers, thereby reducing environmen- tal pollution. Slow-release fertilizers could also reduce the frequency of fertilization and labor costs.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201003014)Youth Foundation of Beijing Academy of Agricultural and Forestry Sciences(QNJJ201311)~~
文摘ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment friendly fertilizer was explored. ResultThe results show that compared with urea treatment, slow-release nitrogen fertilizer treatments could reduce nitrate nitrogen content and leaching amount in soils. Compared with PCU30 and IU treatments, the PCU60 treatment became more efficient in reducing nitrate content and leaching amount in 0-90 cm soil layer. ConclusionIn summary, slow-release nitrogen fertilizer, which can reduce soil nitrate content and leaching losses, is a kind of novel fertilizer with high environmental benefit and promising application.
基金supported by the National Key Research and Development Program of China(2017YFD0301701 and 2017YFD0301706)National Natural Science Foundation of China(31660369)。
文摘Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.
文摘[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.
基金the National Key Research and Development Program of China(No.2017YFD0800103)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA23020401)。
文摘Oxamide is a potential slow-release nitrogen(N)fertilizer,especially under waterlogged conditions,due to its low solubility in water and the slow-release of ammonium by soil amidases.To investigate the effects of oxamide granules(2.00-2.38 mm in diameter)as a single basal fertilizer(180 or 144 kg N ha^(-1))on rice growth,soil properties,and N use efficiency in terms of N recovery efficiency(NRE),we conducted field experiments on two different types of paddy soils over two rice-growing seasons.Results showed that the fertilization effects of oxamide granules varied between the two types of paddy soils.In the red clayey paddy soil,the grain yields for both rice-growing seasons were high with a significantly higher NRE in the oxamide treatment than in the urea treatment.However,in the alluvial sandy paddy soil,the grain yields in the oxamide treatment were slightly lower than those in the urea treatment.Furthermore,oxamide produced little improvement in NRE in the alluvial sandy paddy soil.Soil incubation experiments over 98 d were also carried out to evaluate the factors affecting the N release behavior of oxamide granules in the two types of paddy soils.We found that the amidase activity was higher and,therefore,the oxamide hydrolysis rate was faster in the alluvial sandy paddy soil,which had a higher soil pH value and organic matter content,compared to the red clayey paddy soil.The faster N release and the longer growth period resulted in a mismatch between N supply by oxamide and rice demand,which,in turn,led to little improvement in NRE and a decreased grain yield in the alluvial sandy paddy soil,especially in the reduced oxamide treatment.These results could help select the appropriate size of oxamide granules for use as a slow-release N fertilizer depending on the soil properties and growth period of rice.
基金supported by the National Natural Science Foundation of China(No.41401548)the Jilin Provincial Research Foundation for Basic Research,China(No.20150520151JH)the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(Nos. ES201510,and HC201622)
文摘Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems.However,nitrogen removal efficiency is usually limited due to the low carbon/nitrogen(C/N) ratio.A common solution is to add external carbon sources,but amount of liquid is difficult to determine.Therefore,a combined wood-chip-framework substrate(with wood,slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem.Results show that the removal rate of ammonia nitrogen(NH_4~+-N),total nitrogen(TN) and chemical oxygen demand(COD) could reach 37.5%-85%,57.4%-86%,32.4%-78%,respectively,indicating the combined substrate could diffuse sufficient oxygen for the nitrification process(slag and gravel zone) and provide carbon source for denitrification process(wood-chip zone).The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip,respectively.Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process,while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process.This study provides a new idea for wetland treatment of high-strength nitrogen wastewater.
基金the financial support of the National Key Research and Development Program of China(2016YFD0300109)National Natural Science Foundation of China(32101828,32071958)+3 种基金Natural Science Foundation of Jiangsu Province(BK20200952)the Open Project Program of Joint International Research Laboratory of Agriculture and Agri-Product Safety(JILAR-KF202010)the Jiangsu Agricultural Industry Technology System of China(JATS[2020]444)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Application of slow-release fertilizer(SF)is a nutrient-management measure aimed at improving maize nutrient use and yield and saving labor cost.One-time application of SF at sowing usually results in nutrient deficiency during the post-silking stage,owing to the long growth period of spring maize.This study was conducted to investigate the effects on spring maize of SF application stage(zero,three-,and six-leaf stages,designated as SF0,SF3,and SF6,respectively)on grain yield,total soil rhizosphere nitrogen(N)content,and root activity,in comparison with the conventional fertilization mode(CF,application of compound fertilizer at sowing time,and topdressing urea at six-leaf and tasseling stages)at the same fertilization level as the control.Compared with no fertilization(F0)and CF,SF increased grain number and weight.The maize cultivars Suyu 30(SY30)and Jiangyu 877(JY877)produced the highest grain yield and net return under SF6 treatment over the three years.SF6 increased enzymatic activities including oxidoreductase,hydrolase,transferase,and lyase in rhizosphere soil at silking(R1)and milking stages(R3).SF6 increased the total N contents of rhizosphere soil by 7.1%at R1 and 9.2%R3 stages compared with SF0.The activities of antioxidant enzymes in roots were increased under SF6 treatments at R1and R3.The mean root activities of SF0,SF3,and SF6 increased by 7.1%,12.8%,and 20.5%compared with CF at R1 and by 8.8%,13.0%,and 23.5%at R3.Delaying the application time of SF could increase grain yield by increasing total N content of rhizosphere soil,delaying root senescence,and increasing root activity at the late reproductive stage.Applying SF at the six-leaf stage is recommended as an effective fertilization strategy for the sustainable production of spring maize in southern China.
文摘Objective: To observe the effect of slow-released morphine tablets by rectum in treating the patients of moderate to severe cancer pain with server nausea and vomiting or dysphagia. Methods: 54 cases of cancer patients with server nau- sea and vomiting symptoms or dysphagia were treated with slow-released morphine tablets by rectum, 30-90 mg/time, once every 12 hours. The drug dose was titrated by degree of pain, and the effects and adverse effects were observed. Results: The total effective rate was 81.48%, complete response rate was 51.85% (28/54), and the partial response rate was 29.63% (16/54); there were no obvious toxicities, and the common adverse symptoms included nausea (16.7%) and vomiting (9.3%). Conclusion: The treatment of slow-released morphine tablet by rectum could effectively control cancer pain, the adverse effects were slight than that by mouth. It is safe and effective to be worthy of the adhibition in clinic.
文摘After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed, taking the shape of Nitrogen slow-release fertilizers, doing the dynamic bioleaching test by the method of Artificial rainfall simulation, researching the slow-release characteristic, water retention. When the mass ratio of the wet sludge whose water content is 82.5%: bentonite: corrupt and broken straw: urea is 62.5: 12.5: 12.5: 12.5, drip washing the 10g Nitrogen slow-release fertilizers by the 80ml distilled water after 48h, the residue rate of urea is 29.63%; Under the room temperature of 25 ℃, 77%RH, moisture evaporate 46.32% after 60 h. The results demonstrate that the slow-release fertilizer has a good release-effect of nitrogen and water conservation effect. It provides the basic for the development and application of the sewage in the aspect of Nitrogen slow-release fertilizers.
基金Supported by National Key Research and Development Program of China(2017FYD0101406)Zhoukou Comprehensive Test Station of Henan Provincial Corn Industry Technology System(HARS-22-02-Z5)。
文摘[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.
基金funded by the Higher Vocational Colleges and Higher Junior Colleges Research Project of Heilongjiang Provincial Education Department (11515077)
文摘Slow-release non-protein nitrogen feed has a large market demand. It has a long research history, but its production technology needs further improvement in order to realize the industrial production of slow-release non-protein nitrogen extruded feed. By designing the best formula and using chelating and emulsifying process, the slow-release non-protein nitrogen extruded feed additives were produced. This product increases milk yield and improves milk quality, thus increasing economic efficiency.
基金supported by the National Natural Science Foundation of China(No.32071980)the Key Projects of Shaanxi Agricultural Collaborative Innovation and Extension Alliance(No.LMZD202201)+1 种基金the Key R&D Project in Shaanxi Province(No.2021LLRH-07)Shaanxi Natural Scientific Basic Research Program project(No.2022JQ-157).
文摘Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.
基金supported by the Natural Science Fund of China(31771724)the Key Research and Development Project of Shaanxi Province(2024NC-ZDCYL-01-10).
文摘The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.
基金supported by the National Natural Science Foundation of China(51609247)the Henan Provincial Natural Science Foundation,China(222300420589,202300410553)+4 种基金the Central Public-interest Scientific Institution Basal Research Fund,China(FIRI2022-22)the Science&Technology Fundamental Resources Investigation Program,China(2022FY101601)the Science and Technology Project of Xinxiang City,Henan Province,China(GG2021024)the Major Special Science and Technology Project of Henan Province,China(221100110700)the Joint Fund of Science and Technology Research and Development Plan of Henan Province,China(Superior Discipline Cultivation)(222301420104)。
文摘Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N response makes it difficult to predict and quantify the effect of water deficit on crop N status.The nitrogen nutrition index(NNI)has been widely used to accurately diagnose crop N status and to evaluate the effectiveness of N application.The decline of NNI under water-limiting conditions has been documented,although the underlying mechanism governing this decline is not fully understood.This study aimed to elucidate the reason for the decline of NNI under waterlimiting conditions and to provide insights into the accurate utilization of NNI for assessing crop N status under different water-N interaction treatments.Rainout shelter experiments were conducted over three growing seasons from 2018 to 2021 under different N(75 and 225 kg N ha^(-1),low N and high N)and water(120 to 510 mm,W0 to W3)co-limitation treatments.Plant N accumulation,shoot biomass(SB),plant N concentration(%N),soil nitrate-N content,actual evapotranspiration(ET_a),and yield were recorded at the stem elongation,booting,anthesis and grain filling stages.Compared to W0,W1 to W3 treatments exhibited NNI values that were greater by 10.2 to 20.5%,12.6to 24.8%,14 to 24.8%,and 16.8 to 24.8%at stem elongation,booting,anthesis,and grain filling,respectively,across the 2018-2021 seasons.This decline in NNI under water-limiting conditions stemmed from two main factors.First,reduced ET_(a) and SB led to a greater critical N concentration(%N_(c))under water-limiting conditions,which contributed to the decline in NNI primarily under high N conditions.Second,changes in plant%N played a more significant role under low N conditions.Plant N accumulation exhibited a positive allometric relationship with SB and a negative relationship with soil nitrate-N content under water-limiting conditions,indicating co-regulation by SB and the soil nitrate-N content.However,this regulation was influenced by water availability.Plant N accumulation sourced from the soil nitrate-N content reflects soil N availability.Greater soil water availability facilitated greater absorption of soil nitrate-N into the plants,leading to a positive correlation between plant N accumulation and ET_(a)across the different water-N interaction treatments.Therefore,considering the impact of soil water availability is crucial when assessing soil N availability under water-limiting conditions.The findings of this study provide valuable insights into the factors contributing to the decline in NNI among different water-N interaction treatments and can contribute to the more accurate utilization of NNI for assessing winter wheat N status.
基金supported by the Key Research and Development Program of Shaanxi,China(2021NY-083)the National Natural Science Foundation of China(31871567)。
文摘The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060004)the National Natural Science Foundation of China(Grant Nos.12072355 and 92271117)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0620202).
文摘The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium radiation in the visible range using a shock tube was studied.Experiments were conducted with a shock velocity of 4.7 km/s,using nitrogen at a pressure of 20 Pa.To address measurement difficulties associated with weak radiation,a special square section shock tube with a side length of 380 mm was utilized.A high-speed camera characterized the shock wave’s morphology,and a spectrograph and a monochromator captured the radiation.The spectra were analyzed,and the numerical spectra were compared with experimental results,showing a close match.Temperature changes behind the shock wave were obtained and compared with numerical predictions.The findings indicate that the vibrational temperatures are overestimated,while the vibrational relaxation time is likely underestimated,due to the oversimplified portrayals of the non-equilibrium relaxation process in the models.Additionally,both experimental and simulated time-resolved profiles of radiation intensity at specific wavelengths were analyzed.The gathered data aims to enhance computational fluid dynamics codes and radiation models,improving their predictive accuracy.
基金financially supported by the National Natural Science Foundation of China(No.21675131)the Volkswagen Foundation(Freigeist Fellowship No.89592)+1 种基金the Natural Science Foundation of Chongqing(No.2020jcyj-zdxmX0003,CSTB2023NSCQ-MSX0924)the National Research Foundation,Singapore,and A*STAR(Agency for Science Technology and Research)under its LCER Phase 2 Programme Hydrogen&Emerging Technologies FI,Directed Hydrogen Programme(Award No.U2305D4003).
文摘Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.
基金supported by Natural Science Foundation of Shandong Province(Nos.ZR2022YQ42,ZR2021JQ15,ZR2021QE011,ZR2021ZD20,2022GJJLJRC-01)Innovative Team Project of Jinan(No.2021GXRC019)the National Natural Science Foundation of China(Nos.52022037,52202366).
文摘In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.
基金supported by the State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University,China (GSCS-2022-Z02)the National Key R&D Program of China (2022YFD1900300)+2 种基金the National Natural Science Foundation of China (32260549)the Innovation Group of Basic Research in Gansu Province, China (25JRRA807)the Major Special Research Projects in Gansu Province, China (22ZD6NA009)。
文摘The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer plays a key rolein improving soil quality and stabilizing maize yields, but few studies have compared different substitution rates. Afield study was carried out in 2021 and 2022, based on a long-term trial initiated in 2016, which included five organicfertilizer N substitution rates with equal inputs of 200 kg N ha^(–1): 0% organic fertilizer(T1, 100% inorganic fertilizer),50.0% organic+50.0% inorganic fertilizer(T2), 37.5% organic+62.5% inorganic fertilizer(T3), 25.0% organic+75.0%inorganic fertilizer(T4), and 12.5% organic+87.5% inorganic fertilizer(T5), as well as a no fertilizer control(T6). Theresults of the two years showed that T3 and T1 had the highest grain yield and biomass, respectively, and there wasno significant difference between T1 and T3. Compared with T1, the 12.5, 25.0, 37.5, and 50.0% substitution rates in T5, T4, T3, and T2 significantly reduced total nitrogen losses(NH_(3), N_(2)O) by 8.3, 16.1, 18.7, and 27.0%, respectively.Nitrogen use efficiency(NUE) was higher in T5, T3, and T1, and there were no significant differences among them.Organic fertilizer substitution directly reduced NH_(3)volatilization and N_(2)O emission from farmland by lowering theammonium nitrogen and alkali-dissolved N contents and by increasing soil moisture. These substitution treatmentsreduced N_(2)O emissions indirectly by regulating the abundances of AOB and nirK-harboring genes by promotingsoil moisture. Specifically, the 37.5% organic fertilizer substitution reduces NH_(3)volatilization and N_(2)O emission from farmland by reducing the ammonium nitrogen and alkali-dissolved N contents and increasing moisture, which negatively regulate the abundance of AOB and nir K-harboring genes to reduce N_(2)O emissions indirectly in rainfed maize fields on the Loess Plateau of China.
基金financially supported by the National Natural Science Foundation of China(Nos.51874236 and 52174207)Shaanxi Science and Technology Innovation Team(No.2022TD02)Henan University of Science and Technology PhD Funded Projects(No.B2025-9)。
文摘To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.