The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining...The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining the material point method and finite element method(MPM-FEM)to analyze the impact of sloping seabeds on the three-dimensional soil-spudcan interaction.The MPM-FEM model implements the B¯approach to solve the challenge of volumetric locking due to the incompressibility constraints imposed by yield criterion.It is validated against the centrifuge results.The effects of sloping seabeds on penetration resistance,soil flow pattern,lateral response,stress distribution,and failure mechanism are discussed.The soil mainly undergoes overall failure when the ratio of penetration depth to spudcan diameter(i.e.D P/D)is between 0 and 0.25.As the slope angle increases,the soil on the side of lower slope is expelled further,resulting in an asymmetric stress distribution and a larger horizontal sliding force of soil.When D P/D increases to 0.75,the soil transitions to localized plastic flow failure,and the range of soil flow affected by the spudcan penetration decreases.The results show that,when the slope angle increases,the lateral displacement and stress distribution on the lower slope of a sloping seabed is significantly larger than that of a horizontal seabed,impacting the spudcan and surrounding soil behavior.The study suggests that the seabed slope significantly affects the range of soil flow and failure at shallow penetration,indicating that the slope angle should be taken into account in the design and installation of offshore jack-up rigs,particularly in areas with sloping seabeds.展开更多
Sloping farmland(SpF)is not only an important space for food production and supply in China’s hilly areas,but also a major source of soil erosion.Thus,it is important to achieve a healthy balance between regional foo...Sloping farmland(SpF)is not only an important space for food production and supply in China’s hilly areas,but also a major source of soil erosion.Thus,it is important to achieve a healthy balance between regional food security and environmental protection.Yangtze River Economic Belt(YREB),an important grain production base where SpF concentrated in China,is also faced with serious soil erosion.However,research at the macro scale on the spatiotemporal change of SpF and its driving forces in YREB is still lacking.To bridge the gap,we first analyzed the long-term evolution characteristics of SpF in 1069 counties in the YREB and then explored the driving mechanism of SpF changes during 1980-2020.Results showed that the SpF in the YREB continuously decreased during the study period,with a total area decreasing by 26,300 km2.SpF was primarily concentrated in the upper reaches of the YREB while SpF use dynamic degree varied significantly with the most active change in the lower reaches,reaching to a maximum of 0.324%.The spatial gravity of SpF distribution relocated 20.15 km towards the southwest.As for the driving factors,the socioeconomic factors contributed greater to SpF changes in the whole YREB and its subregions.The intensity of human activities is the most crucial,with factor contribution rate constantly above 0.76.The interactive detection revealed that the prevailing interaction format was primarily bi-enhanced,supplemented with nonlinear-enhanced,which amplified the role of different factors after interacting with them.The pair-wise interaction involving socioeconomic factors had a more potential effect on SpF changes compared to those between physical geography and locational factors.The influence of the intensity of human activities on SpF changes is greatly enhanced after interacting with any factor.It dominated SpF changes in the YREB and its interaction with GDP played an important role at all times.These findings can enlighten differential management strategies of SpF use and ecological conservation in the YREB.展开更多
The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid...The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid flows has been carried out through computational analysis. A mathematical framework employing governing differential equations that are partial has been implemented to produce an ensemble of ordinary differential equations, which happen to be nonlinear that incorporate nanofluid flows by utilizing acceptable transformations. Through the combination of the Nachtsheim-Swigert shooting method and the Runge-Kutta method, the group of resulting non-dimensionalized equations is solved computationally. In a few special, confined cases, the corresponding numeric output is thereafter satisfactorily matched with the existing available research. The consequences of heat generation regarding local skin friction coefficient and rate of heat in conjunction with mass transfer have been investigated, evaluated, and reported on the basis of multiple nanofluid flows.展开更多
With digital elevation model (DEM),sloping data were extracted automatically and soil erosion situation was also investigated. Compared with field survey and the related studies,the results showed that parallel rang...With digital elevation model (DEM),sloping data were extracted automatically and soil erosion situation was also investigated. Compared with field survey and the related studies,the results showed that parallel range-gorge landform in Three Gorges reservoir area,the inter-bedded structures formed by Jurassic purple clay (page) rocks and human activities were the key controlling factors for small-scale sloping terrain.展开更多
[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion o...[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion on productivity of sloping field was studied. [Result] The results showed that there was extremely significantly posi- tive correlation between the thicknesses of covered topsoil with either the yield of maize seeds or the yield of maize stalks, which indicated that the yields of maize seeds and maize stalks decreased extremely significantly with the increase of the amount of surface soil loss caused by erosion on the sloping field. The yields of maize seeds and maize stalks decreased by 29.62% and 24.46% respectively in the treatment with removal of a 15 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 17.31% and 20.14% re- spectively in the treatment with removal of a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 12.69% and 11.51% respectively in the treatment with removal of a 5 cm thick layer of ma- ture topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 10.00% and 9.35% respectively in the treatment with covering with a 5 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 15.77% and 16.19% respectively in the treatment with covering with a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 17.69% and 25.18% respectively in the treat- ment with covering with a 15 cm thick layer of mature topsoil in the plow layer. [Conclusion] This study provides a basis for assessing the effect of soil erosion on sloping field.展开更多
High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of ...High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).展开更多
Pesticides applied to sloping farmland may lead to surface water contamination through rapid transport processes as influenced by the complex topography and high spatial variability of soil properties and land use in ...Pesticides applied to sloping farmland may lead to surface water contamination through rapid transport processes as influenced by the complex topography and high spatial variability of soil properties and land use in hilly or mountainous regions. However, the fate of pesticides applied to sloping farmland has not been sufficiently elucidated. This article reviews the current understanding of pesticide transport from sloping farmland to surface water. It examines overland flow and subsurface lateral flow in areas where surface soil is underlain by impervious subsoil or rocks and tile drains. It stresses the importance of quantifying and modeling the contributions of various pathways to rapid pesticide loss at catchment and regional scales. Such models could be used in scenario studies for evaluating the effectiveness of possible mitigation strategies such as constructing vegetated strips, depressions, wetlands and drainage ditches, and implementing good agricultural practices. Field monitoring studies should also be conducted to calibrate and validate the transport models as well as biophysical-economic models, to optimize mitigation measures in areas dominated by sloping farmland.展开更多
For the purpose of understanding the weathering characteristics of surface layers in purple mudstone sloping fields of the Three Gorges Reservoir area of China, oxide content of major elements, composition of clay min...For the purpose of understanding the weathering characteristics of surface layers in purple mudstone sloping fields of the Three Gorges Reservoir area of China, oxide content of major elements, composition of clay minerals, magnetic susceptibility, and difference in weathering characteristics of surface layers under different slope gradients were determined. The results showed that the oxide content of Si, Al, and Fe ranged from 60% to 75% and the weathering coefficient with depth showed no trend along the slope gradient. Also, for gentle (10° and 15°) and intermediate (25° and 40°) slopes the clay relative diffraction peak for kaolinite at the surface between 0-10 cm and 10-20 cm declined with an increase in slope gradient, while the relative diffraction peak for kaolinite in weathered layers on steep slopes (50° and 60°) disappeared altogether. Magnetic susceptibility decreased with increasing depth and, for a given depth layer, decreased with an increase in slope gradient. Analysis of the oxide content, weathering coefficients, clay minerals, and magnetic susceptibility showed that in the Three Gorges Reservoir area, the pedogenesis of the weathering layer in purple mudstone sloping fields was weak with weaker soil formation going from gentle slope to steep slope.展开更多
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not...Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.展开更多
A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al...A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al-3wt%Mg alloy. Through simulation and experiment, it is shown that the sloping angle of the plate greatly affects temperature and velocity distributions, and the temperature and velocity of the alloy at the exit of the sloping plate increase with the increase of the sloping angle. The alloy temperature decreases linearly from the pouring mouth to the exit. The alloy temperature at the exit increases obviously with the increase of pouring temperature. To prepare the semisolid Al-3wt%Mg alloy with good quality, the sloping angle θ=45° is reasonable, and the pouring temperature is suggested to be designed above 650-660℃ but under 700℃.展开更多
Hedgerows with intercropping systems were established at the ICIMOD test and demonstration site at Godawari to assess the effective- ness of Sloping Agricultural Land Technology (SALT) in reducing run- off water vol...Hedgerows with intercropping systems were established at the ICIMOD test and demonstration site at Godawari to assess the effective- ness of Sloping Agricultural Land Technology (SALT) in reducing run- off water volume, controlling soil loss, increasing crop production, and improving soil fertility in the mid-hills of Nepal. Runoff water volume (1996-2002), soil loss (1996-2002) and maize yield (1995-2001), and soil fertility-related parameters were assessed on SALT models with three factors: the type of nitrogen-fixing plant, the farmers' practice, and fertilizer use. Results showed a significant effect of Alnus nepalensis and/or Indigofera dosua on runoff water volume, soil loss, crop produc- tion, soil water retention, and soil nutrients (NPK). Farmers' practice and fertilization did not play a significant role in reducing runoff water and soil loss. However, farmers' practice significantly increased crop produc- tion. Therefore, integrating soil conservation approaches on SALT sys- tems enhances stable economic output to hills and mountain farmers.展开更多
Rainfall runoff is a critical hydrological process related to soil erosion and agricultural non-point pollu-tion.In this study,25 simulation experiments on rainfall were carried out in five runoff plots.Rape(Brassica ...Rainfall runoff is a critical hydrological process related to soil erosion and agricultural non-point pollu-tion.In this study,25 simulation experiments on rainfall were carried out in five runoff plots.Rape(Brassica campestris)was planted on the downslope of the plots.Experiments were conducted when the vegetation coverage reached 80%.Each plot was subjected to five rainfall events differing in intensity.The results showed:(1)the runoff coefficients of overland flow and subsurface flow were less than 0.6 and 0.005,respectively;(2)the discharge of overland flow was the quadratic function of time;(3)runoff coefficient was the function of slope gradient and rain-fall intensity.When the slope gradient increased from 8.7%to 46.6%,the runoff coefficient of overland flow first increased and then decreased.The runoff coefficient reached the maximum when the slope gradient was within the range of 17.6%-36.4%;and(4)the process of subsurface flow generation included the increasing phase and reces-sion phase.Discharge was a logarithm function of time in the increasing phase,and an exponential function in the recession phase.Runoff coefficient of subsurface flow decreased first and then increased when the slope gradient varied from 8.7%to 46.6%and was not correlated with rainfall intensity.展开更多
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongch...The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is ob- served along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward toot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.展开更多
In this paper, domestic and abroad research progresses and related calculation formulae of the mean overtopping discharge are summarized. Through integral physical model experiments, the relation between the wave dire...In this paper, domestic and abroad research progresses and related calculation formulae of the mean overtopping discharge are summarized. Through integral physical model experiments, the relation between the wave direction and the overtopping discharge on the top of the sloping dike is focused on and put into analysis and discussion; and a modified formula for mean overtopping discharges under oblique irregular waves is proposed. The study shows that the mean overtopping discharge generally goes down as the relative wave obliquity fl increases for a fixed measurement point and the mean overtopping discharge generally increases as the wave steepness H/L decreases (the cycle increases) for a fixed relative wave obliquity.展开更多
Eutrophication is recognized as one of the major environmental problems in the Three Gorges Reservoir.Contour hedgerows have been used as a major soil and water conservation measure in this area.Accordingly,a two-year...Eutrophication is recognized as one of the major environmental problems in the Three Gorges Reservoir.Contour hedgerows have been used as a major soil and water conservation measure in this area.Accordingly,a two-year study was conducted to investigate the effects of contour hedgerow intercropping on nutrient loss from sloping farmland in this area.Four treatments were applied:(1) Maize + Soybean,(2) Maize,(3) Maize + Alfalfa,and(4) Maize + Hemerocallis citrina Baroni.Results indicated that nutrient loss in the control treatment(Maize) was serious,especially the average loss flux of total nitrogen(2245.8 mg) and total phosphate(2434.2 mg) in a typical rainfall event.However,the nutrient losses by runoff in the other three treatments with contour hedgerow intercropping showed significant reduction.Compared with the control treatment,the total nitrogen loss in the Alfalfa and Hemerocallis citrina Baroni decreased by 80.9% and 85.0%,respectively,and the total phosphorus loss in the two treatments decreased by 91.2% and 92.5%,respectively.Therefore,it is concluded that nutrient losses could be reduced by using contour hedgerows in the Three Gorges Region.Reducing runoff volume and sediment loss was the main mechanisms of contour hedgerow intercropping to reduce nutrient loss.展开更多
A field experiment was conducted to study the outcome of N using isotope-labeled urea with a peanut cropping system in a Udic Ferrosol on a 7% slope at the Ecological Experimental Station of Red Soil, Chinese Academy ...A field experiment was conducted to study the outcome of N using isotope-labeled urea with a peanut cropping system in a Udic Ferrosol on a 7% slope at the Ecological Experimental Station of Red Soil, Chinese Academy of Sciences. The micro-plots were designed in two sets with three replicates and four N treatments. An iron frame with its edge 10 cm above the ground was used to control soil erosion and runoff in set A, but in set B the upper edge of the frame was level with the ground. Randomly positioned 15…展开更多
A mathematic model of the solid fraction during rheo-casting by the cooling sloping plate process was established, and the effects of the process parameters on the solid fraction were analyzed. The calculation results...A mathematic model of the solid fraction during rheo-casting by the cooling sloping plate process was established, and the effects of the process parameters on the solid fraction were analyzed. The calculation results show that the experimental result is approximately agreed with the calculation value. The effect of the casting temperature on the change rate of the solid fraction is not obvious. But the beginning solidification length is greatly influenced by the casting temperature. The beginning solidification length increases with the increment of the casting temperature. The effect of the sloping angle on the solid fraction becomes obvious with the increment of the sloping plate length. The solid fraction increases sharply with the decrease of the initial thickness of the melt. The melt initial thickness between 15 and 20 mm is suggested.展开更多
The soil surface roughness and hydraulic roughness coefficient are important hydraulic resistance characteristic parameters. Precisely estimating the hydraulic roughness coefficient is important to understanding mecha...The soil surface roughness and hydraulic roughness coefficient are important hydraulic resistance characteristic parameters. Precisely estimating the hydraulic roughness coefficient is important to understanding mechanisms of overland flow. Four tillage practices, including cropland raking, artificial hoeing, artificial digging, and straight slopes, were considered based on the local agricultural conditions to simulate different values of soil surface roughness in the Loess Plateau. The objective of this study was to investigate the relationship between the soil surface roughness and hydraulic roughness coefficient on sloping farmland using artificial rainfall simulation. On a slope with a gradient of 10°, a significant logarithmic function was developed between the soil surface roughness and Manning's roughness coefficient, and an exponential function was derived to describe the relationship between the soil surface roughness and Reynolds number. On the slope with a gradient of 15°, a significant power function was developed to reflect the relationship between the soil surface roughness and Manning's roughness coefficient, and a linear function was derived to relate the soil surface roughness to the Reynolds number. These findings can provide alternative ways to estimate the hydraulic roughness coefficient for different types of soil surface roughness.展开更多
Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were...Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.展开更多
Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated. The results show that the cooling sloping plate can refine not only grains of alloys but al...Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated. The results show that the cooling sloping plate can refine not only grains of alloys but also can obviously refine pure metal. Cooling ability of the plate is the key factor that induces grain refining, the plate material and the flow amount can affect cooling rate of the melt and thus affect refining effectiveness. The cooling rate of the melt on the cooling sloping plate is much faster than that of the conventional casting process, which can reach 1000 K/s and belongs to meta-rapid solidification scope. The thickness of the temperature boundary layer is much larger than that of the velocity boundary layer on the sloping plate, but the temperature gradient is small in the temperature boundary layer. Under strong cooling action by the cooling plate, most parts of the melt on the plate surface can form undercooling, which causes continuous eruptive nucleation, this is the main grain refining mechanism, and the heterogeneous nucleation on the plate surface is a helpful supplement for the nucleation.展开更多
基金supported by the start-up funding from Tsinghua University(Grant No.100005014).
文摘The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining the material point method and finite element method(MPM-FEM)to analyze the impact of sloping seabeds on the three-dimensional soil-spudcan interaction.The MPM-FEM model implements the B¯approach to solve the challenge of volumetric locking due to the incompressibility constraints imposed by yield criterion.It is validated against the centrifuge results.The effects of sloping seabeds on penetration resistance,soil flow pattern,lateral response,stress distribution,and failure mechanism are discussed.The soil mainly undergoes overall failure when the ratio of penetration depth to spudcan diameter(i.e.D P/D)is between 0 and 0.25.As the slope angle increases,the soil on the side of lower slope is expelled further,resulting in an asymmetric stress distribution and a larger horizontal sliding force of soil.When D P/D increases to 0.75,the soil transitions to localized plastic flow failure,and the range of soil flow affected by the spudcan penetration decreases.The results show that,when the slope angle increases,the lateral displacement and stress distribution on the lower slope of a sloping seabed is significantly larger than that of a horizontal seabed,impacting the spudcan and surrounding soil behavior.The study suggests that the seabed slope significantly affects the range of soil flow and failure at shallow penetration,indicating that the slope angle should be taken into account in the design and installation of offshore jack-up rigs,particularly in areas with sloping seabeds.
基金funded by the grants from the National Natural Science Foundation of China(42230113,42101415)Ministry of Education of Humanities and Social Science Project(21YJCZH181)supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02).
文摘Sloping farmland(SpF)is not only an important space for food production and supply in China’s hilly areas,but also a major source of soil erosion.Thus,it is important to achieve a healthy balance between regional food security and environmental protection.Yangtze River Economic Belt(YREB),an important grain production base where SpF concentrated in China,is also faced with serious soil erosion.However,research at the macro scale on the spatiotemporal change of SpF and its driving forces in YREB is still lacking.To bridge the gap,we first analyzed the long-term evolution characteristics of SpF in 1069 counties in the YREB and then explored the driving mechanism of SpF changes during 1980-2020.Results showed that the SpF in the YREB continuously decreased during the study period,with a total area decreasing by 26,300 km2.SpF was primarily concentrated in the upper reaches of the YREB while SpF use dynamic degree varied significantly with the most active change in the lower reaches,reaching to a maximum of 0.324%.The spatial gravity of SpF distribution relocated 20.15 km towards the southwest.As for the driving factors,the socioeconomic factors contributed greater to SpF changes in the whole YREB and its subregions.The intensity of human activities is the most crucial,with factor contribution rate constantly above 0.76.The interactive detection revealed that the prevailing interaction format was primarily bi-enhanced,supplemented with nonlinear-enhanced,which amplified the role of different factors after interacting with them.The pair-wise interaction involving socioeconomic factors had a more potential effect on SpF changes compared to those between physical geography and locational factors.The influence of the intensity of human activities on SpF changes is greatly enhanced after interacting with any factor.It dominated SpF changes in the YREB and its interaction with GDP played an important role at all times.These findings can enlighten differential management strategies of SpF use and ecological conservation in the YREB.
文摘The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid flows has been carried out through computational analysis. A mathematical framework employing governing differential equations that are partial has been implemented to produce an ensemble of ordinary differential equations, which happen to be nonlinear that incorporate nanofluid flows by utilizing acceptable transformations. Through the combination of the Nachtsheim-Swigert shooting method and the Runge-Kutta method, the group of resulting non-dimensionalized equations is solved computationally. In a few special, confined cases, the corresponding numeric output is thereafter satisfactorily matched with the existing available research. The consequences of heat generation regarding local skin friction coefficient and rate of heat in conjunction with mass transfer have been investigated, evaluated, and reported on the basis of multiple nanofluid flows.
基金Supported by Chinese Academy of Sciences of Western Action Plan Project (KZCX2-XB2-07-01)National Scientific and Technological Support Project (2008BAD98B04)~~
文摘With digital elevation model (DEM),sloping data were extracted automatically and soil erosion situation was also investigated. Compared with field survey and the related studies,the results showed that parallel range-gorge landform in Three Gorges reservoir area,the inter-bedded structures formed by Jurassic purple clay (page) rocks and human activities were the key controlling factors for small-scale sloping terrain.
基金Supported by the Special Fund of International Plant Nutrition Institute Fund (NMS-Yunnan200801)~~
文摘[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion on productivity of sloping field was studied. [Result] The results showed that there was extremely significantly posi- tive correlation between the thicknesses of covered topsoil with either the yield of maize seeds or the yield of maize stalks, which indicated that the yields of maize seeds and maize stalks decreased extremely significantly with the increase of the amount of surface soil loss caused by erosion on the sloping field. The yields of maize seeds and maize stalks decreased by 29.62% and 24.46% respectively in the treatment with removal of a 15 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 17.31% and 20.14% re- spectively in the treatment with removal of a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 12.69% and 11.51% respectively in the treatment with removal of a 5 cm thick layer of ma- ture topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 10.00% and 9.35% respectively in the treatment with covering with a 5 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 15.77% and 16.19% respectively in the treatment with covering with a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 17.69% and 25.18% respectively in the treat- ment with covering with a 15 cm thick layer of mature topsoil in the plow layer. [Conclusion] This study provides a basis for assessing the effect of soil erosion on sloping field.
文摘High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).
基金supported by the "Hundred Talents Program" of the Chinese Academy of Sciences (No. 724)the National Natural Science Foundation of China (No.41171372)the National Key Technology R&D Program of the Ministry of Science and Technology of China(No. 2011BAC09B05)
文摘Pesticides applied to sloping farmland may lead to surface water contamination through rapid transport processes as influenced by the complex topography and high spatial variability of soil properties and land use in hilly or mountainous regions. However, the fate of pesticides applied to sloping farmland has not been sufficiently elucidated. This article reviews the current understanding of pesticide transport from sloping farmland to surface water. It examines overland flow and subsurface lateral flow in areas where surface soil is underlain by impervious subsoil or rocks and tile drains. It stresses the importance of quantifying and modeling the contributions of various pathways to rapid pesticide loss at catchment and regional scales. Such models could be used in scenario studies for evaluating the effectiveness of possible mitigation strategies such as constructing vegetated strips, depressions, wetlands and drainage ditches, and implementing good agricultural practices. Field monitoring studies should also be conducted to calibrate and validate the transport models as well as biophysical-economic models, to optimize mitigation measures in areas dominated by sloping farmland.
基金Project supported by the National Natural Science Foundation of China (No. 40272126)the Nanjing University Startup Foundation for Young Scholar (No. 0209005116).
文摘For the purpose of understanding the weathering characteristics of surface layers in purple mudstone sloping fields of the Three Gorges Reservoir area of China, oxide content of major elements, composition of clay minerals, magnetic susceptibility, and difference in weathering characteristics of surface layers under different slope gradients were determined. The results showed that the oxide content of Si, Al, and Fe ranged from 60% to 75% and the weathering coefficient with depth showed no trend along the slope gradient. Also, for gentle (10° and 15°) and intermediate (25° and 40°) slopes the clay relative diffraction peak for kaolinite at the surface between 0-10 cm and 10-20 cm declined with an increase in slope gradient, while the relative diffraction peak for kaolinite in weathered layers on steep slopes (50° and 60°) disappeared altogether. Magnetic susceptibility decreased with increasing depth and, for a given depth layer, decreased with an increase in slope gradient. Analysis of the oxide content, weathering coefficients, clay minerals, and magnetic susceptibility showed that in the Three Gorges Reservoir area, the pedogenesis of the weathering layer in purple mudstone sloping fields was weak with weaker soil formation going from gentle slope to steep slope.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.
基金This work was financially supported by the National Natural Science Foundation of China (No.50604007)the Natural ScienceFoundation of Liaoning Province, China (No.20062016)
文摘A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al-3wt%Mg alloy. Through simulation and experiment, it is shown that the sloping angle of the plate greatly affects temperature and velocity distributions, and the temperature and velocity of the alloy at the exit of the sloping plate increase with the increase of the sloping angle. The alloy temperature decreases linearly from the pouring mouth to the exit. The alloy temperature at the exit increases obviously with the increase of pouring temperature. To prepare the semisolid Al-3wt%Mg alloy with good quality, the sloping angle θ=45° is reasonable, and the pouring temperature is suggested to be designed above 650-660℃ but under 700℃.
基金supported in part by the Nepal Academy of Science and Technology(NAST)
文摘Hedgerows with intercropping systems were established at the ICIMOD test and demonstration site at Godawari to assess the effective- ness of Sloping Agricultural Land Technology (SALT) in reducing run- off water volume, controlling soil loss, increasing crop production, and improving soil fertility in the mid-hills of Nepal. Runoff water volume (1996-2002), soil loss (1996-2002) and maize yield (1995-2001), and soil fertility-related parameters were assessed on SALT models with three factors: the type of nitrogen-fixing plant, the farmers' practice, and fertilizer use. Results showed a significant effect of Alnus nepalensis and/or Indigofera dosua on runoff water volume, soil loss, crop produc- tion, soil water retention, and soil nutrients (NPK). Farmers' practice and fertilization did not play a significant role in reducing runoff water and soil loss. However, farmers' practice significantly increased crop produc- tion. Therefore, integrating soil conservation approaches on SALT sys- tems enhances stable economic output to hills and mountain farmers.
基金supported by the National Natural Science Foundation of China(Grant No.40871134)the State Key Laboratory of Earth Surface Processes and Resource Ecology
文摘Rainfall runoff is a critical hydrological process related to soil erosion and agricultural non-point pollu-tion.In this study,25 simulation experiments on rainfall were carried out in five runoff plots.Rape(Brassica campestris)was planted on the downslope of the plots.Experiments were conducted when the vegetation coverage reached 80%.Each plot was subjected to five rainfall events differing in intensity.The results showed:(1)the runoff coefficients of overland flow and subsurface flow were less than 0.6 and 0.005,respectively;(2)the discharge of overland flow was the quadratic function of time;(3)runoff coefficient was the function of slope gradient and rain-fall intensity.When the slope gradient increased from 8.7%to 46.6%,the runoff coefficient of overland flow first increased and then decreased.The runoff coefficient reached the maximum when the slope gradient was within the range of 17.6%-36.4%;and(4)the process of subsurface flow generation included the increasing phase and reces-sion phase.Discharge was a logarithm function of time in the increasing phase,and an exponential function in the recession phase.Runoff coefficient of subsurface flow decreased first and then increased when the slope gradient varied from 8.7%to 46.6%and was not correlated with rainfall intensity.
基金supported by Research and Development for KMA Weather, Climate, and Earth System Services (Grant No. NIMS-2016-3100)
文摘The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is ob- served along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward toot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFC1402000 and 2016YFC1402002)the Special Funds Targeting at Industrial Scientific Researches for Public Welfare of Ministry of Water Resources(MWR)(Grant No.201401004)+3 种基金the National Natural Science Foundation of China(Grant No.51579156)the Major Project of Nanjing Hydraulic Research Institute Funds(Grant No.Y214009)the Jiangsu Province Hydraulic Science and Technology Projects(Grant No.2012001-8)the Jiangsu Province Hydraulic Science and Technology Projects(Grant No.2014048)
文摘In this paper, domestic and abroad research progresses and related calculation formulae of the mean overtopping discharge are summarized. Through integral physical model experiments, the relation between the wave direction and the overtopping discharge on the top of the sloping dike is focused on and put into analysis and discussion; and a modified formula for mean overtopping discharges under oblique irregular waves is proposed. The study shows that the mean overtopping discharge generally goes down as the relative wave obliquity fl increases for a fixed measurement point and the mean overtopping discharge generally increases as the wave steepness H/L decreases (the cycle increases) for a fixed relative wave obliquity.
基金by the National Science & Technology Pillar Program (Grant No. 2009ZX07104-002)the CAS Actionplan for West Development (GrantNo. KZCX2-XB3-09)the Natural Science Foundation of China (Grant No. 40901255)
文摘Eutrophication is recognized as one of the major environmental problems in the Three Gorges Reservoir.Contour hedgerows have been used as a major soil and water conservation measure in this area.Accordingly,a two-year study was conducted to investigate the effects of contour hedgerow intercropping on nutrient loss from sloping farmland in this area.Four treatments were applied:(1) Maize + Soybean,(2) Maize,(3) Maize + Alfalfa,and(4) Maize + Hemerocallis citrina Baroni.Results indicated that nutrient loss in the control treatment(Maize) was serious,especially the average loss flux of total nitrogen(2245.8 mg) and total phosphate(2434.2 mg) in a typical rainfall event.However,the nutrient losses by runoff in the other three treatments with contour hedgerow intercropping showed significant reduction.Compared with the control treatment,the total nitrogen loss in the Alfalfa and Hemerocallis citrina Baroni decreased by 80.9% and 85.0%,respectively,and the total phosphorus loss in the two treatments decreased by 91.2% and 92.5%,respectively.Therefore,it is concluded that nutrient losses could be reduced by using contour hedgerows in the Three Gorges Region.Reducing runoff volume and sediment loss was the main mechanisms of contour hedgerow intercropping to reduce nutrient loss.
基金Project supported by the Key Project of Knowledge Innovation System of Chinese Academy of Sciences (No. KZCX3-SW-417) the National Key Basic Research Support Foundation of China (No. G1999011801).
文摘A field experiment was conducted to study the outcome of N using isotope-labeled urea with a peanut cropping system in a Udic Ferrosol on a 7% slope at the Ecological Experimental Station of Red Soil, Chinese Academy of Sciences. The micro-plots were designed in two sets with three replicates and four N treatments. An iron frame with its edge 10 cm above the ground was used to control soil erosion and runoff in set A, but in set B the upper edge of the frame was level with the ground. Randomly positioned 15…
基金supported by the National Natural Science Foundation of China (Nos.51034002 and 50974038)National Program for Fundamental Research and Development of China (No.2011CB610405)
文摘A mathematic model of the solid fraction during rheo-casting by the cooling sloping plate process was established, and the effects of the process parameters on the solid fraction were analyzed. The calculation results show that the experimental result is approximately agreed with the calculation value. The effect of the casting temperature on the change rate of the solid fraction is not obvious. But the beginning solidification length is greatly influenced by the casting temperature. The beginning solidification length increases with the increment of the casting temperature. The effect of the sloping angle on the solid fraction becomes obvious with the increment of the sloping plate length. The solid fraction increases sharply with the decrease of the initial thickness of the melt. The melt initial thickness between 15 and 20 mm is suggested.
基金supported by the National Natural Science Foundation of China(Grant No40901138)the Project of the State Key Laboratory of Earth Surface Processes and Resource Ecology(Grant No 2008-KF-05)the Project of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(Grant No10501-283)
文摘The soil surface roughness and hydraulic roughness coefficient are important hydraulic resistance characteristic parameters. Precisely estimating the hydraulic roughness coefficient is important to understanding mechanisms of overland flow. Four tillage practices, including cropland raking, artificial hoeing, artificial digging, and straight slopes, were considered based on the local agricultural conditions to simulate different values of soil surface roughness in the Loess Plateau. The objective of this study was to investigate the relationship between the soil surface roughness and hydraulic roughness coefficient on sloping farmland using artificial rainfall simulation. On a slope with a gradient of 10°, a significant logarithmic function was developed between the soil surface roughness and Manning's roughness coefficient, and an exponential function was derived to describe the relationship between the soil surface roughness and Reynolds number. On the slope with a gradient of 15°, a significant power function was developed to reflect the relationship between the soil surface roughness and Manning's roughness coefficient, and a linear function was derived to relate the soil surface roughness to the Reynolds number. These findings can provide alternative ways to estimate the hydraulic roughness coefficient for different types of soil surface roughness.
基金by the Natural Science Foundation of China (Grant No. 40801101)
文摘Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.
基金financially supported by the National Natural Science Foundation of China (Nos. 51034002 and 50974038)the Fok Ying Tong Education Foundation (No. 132002)National Basic Research Program of China (973 program)(No.2011CB610405)
文摘Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated. The results show that the cooling sloping plate can refine not only grains of alloys but also can obviously refine pure metal. Cooling ability of the plate is the key factor that induces grain refining, the plate material and the flow amount can affect cooling rate of the melt and thus affect refining effectiveness. The cooling rate of the melt on the cooling sloping plate is much faster than that of the conventional casting process, which can reach 1000 K/s and belongs to meta-rapid solidification scope. The thickness of the temperature boundary layer is much larger than that of the velocity boundary layer on the sloping plate, but the temperature gradient is small in the temperature boundary layer. Under strong cooling action by the cooling plate, most parts of the melt on the plate surface can form undercooling, which causes continuous eruptive nucleation, this is the main grain refining mechanism, and the heterogeneous nucleation on the plate surface is a helpful supplement for the nucleation.