In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes u...In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.展开更多
Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security...Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.展开更多
With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant c...With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.展开更多
We extract some physical and chemical features re-lated to the occurrence of single nucleotide polymorphism (SNP) from three groups of sliding windows around SNP site,and then make the predictions about accuracy by ...We extract some physical and chemical features re-lated to the occurrence of single nucleotide polymorphism (SNP) from three groups of sliding windows around SNP site,and then make the predictions about accuracy by using radial basis function (RBF) networks. The result of the forward sliding windows sug-gests that the accuracies and Matthews correlation coefficient (MCC values) ascend with the increasing of length of sliding windows. The accuracies range from 73.27 % to 80.69 %,and MCC values range from 0.465 to 0.614. The backward sliding windows and the sliding windows with fixed length three are de-signed to find the crucial sites related to SNP. The results imply that the occurrence possibility of SNP relies heavily on the above physical and chemical features of sites which are at a distance around 20 bases from the SNP site. Compared with the support vector machine (SVM),our RBF network approach has achieved more satisfactory results.展开更多
This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constru...This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective.展开更多
Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the ta...Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.展开更多
How to process aggregate queries over data streams efficiently and effectively have been becoming hot re search topics in both academic community and industrial community. Aiming at the issues, a novel Linked-tree alg...How to process aggregate queries over data streams efficiently and effectively have been becoming hot re search topics in both academic community and industrial community. Aiming at the issues, a novel Linked-tree algorithm based on sliding window is proposed in this paper. Due to the proposal of concept area, the Linked-tree algorithm reuses many primary results in last window and then avoids lots of unnecessary repeated comparison operations between two successive windows. As a result, execution efficiency of MAX query is improved dramatically. In addition, since the size of memory is relevant to the number of areas but irrelevant to the size of sliding window, memory is economized greatly. The extensive experimental results show that the performance of Linked-tree algorithm has significant improvement gains over the traditional SC (Simple Compared) algorithm and Ranked-tree algorithm.展开更多
Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input stream...Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input streams are restricted to finite memory due to sliding window constraints. So far, non-indexed and indexed stream equijoin algorithms based on sliding windows have been proposed in many literatures. However, none of them takes non-equijoin into consideration. In many eases, non-equijoin queries occur frequently. Hence, it is worth to discuss how to process non-equijoin queries effectively and efficiently. In this paper, we propose an indexed join algorithm for supporting non-equijoin queries. The experimental results show that our indexed non-equijoin techniques are more efficient than those without index.展开更多
To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s...To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s pH value is 6.0–8.5.The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard.This paper aims to study the deep learning prediction model of wastewater’s pH.Firstly,the research uses the random forest method to select the data features and then,based on the sliding window,convert the data set into a time series which is the input of the deep learning training model.Secondly,by analyzing and comparing relevant references,this paper believes that the CNN(Convolutional Neural Network)model is better at nonlinear data modeling and constructs a CNN model including the convolution and pooling layers.After alternating the combination of the convolutional layer and pooling layer,all features are integrated into a full-connected neural network.Thirdly,the number of input samples of the CNN model directly affects the prediction effect of the model.Therefore,this paper adopts the sliding window method to study the optimal size.Many experimental results show that the optimal prediction model can be obtained when alternating six convolutional layers and three pooling layers.The last full-connection layer contains two layers and 64 neurons per layer.The sliding window size selects as 12.Finally,the research has carried out data prediction based on the optimal CNN deep learning model.The predicted pH of the sewage is between 7.2 and 8.6 in this paper.The result is applied in the monitoring system platform of the“Intelligent operation and maintenance platform of the reclaimed water plant.”展开更多
In order to improve the efficiency of the fingerprint core location algorithm, a fingerprint core location method using sliding window on the basis of core location algorithm with the complex filter was proposed. The ...In order to improve the efficiency of the fingerprint core location algorithm, a fingerprint core location method using sliding window on the basis of core location algorithm with the complex filter was proposed. The local region of the fingerprint image was extracted by a fixed-size window sliding in the region of the fingerprint image, and the selected local region by window as the calculation object is used to detect the core. The experiment results show that the method cannot only effectively detect fingerprint core, but also improve the efficiency of the detection algorithm comparing with the global fingerprint core location detection algorithm.展开更多
Submodular function maximization problem has been extensively studied recently.A natural variant of submodular function is k-submodular function,which has many applications in real life,such as influence maximization ...Submodular function maximization problem has been extensively studied recently.A natural variant of submodular function is k-submodular function,which has many applications in real life,such as influence maximization and sensor placement problem.The domain of a k-submodular function has k disjoint subsets,and hence includes submodular function as a special case when k=1.This work investigates the k-submodular function maximization problem with d-knapsack constraints over the sliding window.Based on the smooth histogram technique,we design a deterministic approximation algorithm.Furthermore,we propose a randomized algorithm to improve the approximation ratio.展开更多
The reliable,rapid,and accurate Remaining Useful Life(RUL)prognostics of aircraft power supply and distribution system are essential for enhancing the reliability and stability of system and reducing the life-cycle co...The reliable,rapid,and accurate Remaining Useful Life(RUL)prognostics of aircraft power supply and distribution system are essential for enhancing the reliability and stability of system and reducing the life-cycle costs.To achieve the reliable,rapid,and accurate RUL prognostics,the balance between accuracy and computational burden deserves more attention.In addition,the uncertainty is intrinsically present in RUL prognostic process.Due to the limitation of the uncertainty quantification,the point-wise prognostics strategy is not trustworthy.A Dual Adaptive Sliding-window Hybrid(DASH)RUL probabilistic prognostics strategy is proposed to tackle these deficiencies.The DASH strategy contains two adaptive mechanisms,the adaptive Long Short-Term Memory-Polynomial Regression(LSTM-PR)hybrid prognostics mechanism and the adaptive sliding-window Kernel Density Estimation(KDE)probabilistic prognostics mechanism.Owing to the dual adaptive mechanisms,the DASH strategy can achieve the balance between accuracy and computational burden and obtain the trustworthy probabilistic prognostics.Based on the degradation dataset of aircraft electromagnetic contactors,the superiority of DASH strategy is validated.In terms of probabilistic,point-wise and integrated prognostics performance,the proposed strategy increases by 66.89%,81.73% and 25.84%on average compared with the baseline methods and their variants.展开更多
Continuously publishing histograms in data streams is crucial to many real-time applications,as it provides not only critical statistical information,but also reduces privacy leaking risk.As the importance of elements...Continuously publishing histograms in data streams is crucial to many real-time applications,as it provides not only critical statistical information,but also reduces privacy leaking risk.As the importance of elements usually decreases over time in data streams,in this paper we model a data stream by a sequence of weighted sliding windows,and then study how to publish histograms over these windows continuously.The existing literature can hardly solve this problem in a real-time way,because they need to buffer all elements in each sliding window,resulting in high computational overhead and prohibitive storage burden.In this paper,we overcome this drawback by proposing an online algorithm denoted by Efficient Streaming Histogram Publishing(ESHP)to continuously publish histograms over weighted sliding windows.Specifically,our method first creates a novel sketching structure,called Approximate-Estimate Sketch(AESketch),to maintain the counting information of each histogram interval at every time instance;then,it creates histograms that satisfy the differential privacy requirement by smartly adding appropriate noise values into the sketching structure.Extensive experimental results and rigorous theoretical analysis demonstrate that the ESHP method can offer equivalent data utility with significantly lower computational overhead and storage costs when compared to other existing methods.展开更多
Human motion prediction is a critical issue in human-robot collaboration(HRC)tasks.In order to reduce the local error caused by the limitation of the capture range and sampling frequency of the depth sensor,a hybrid h...Human motion prediction is a critical issue in human-robot collaboration(HRC)tasks.In order to reduce the local error caused by the limitation of the capture range and sampling frequency of the depth sensor,a hybrid human motion prediction algorithm,optimized sliding window polynomial fitting and recursive least squares(OSWPF-RLS)was proposed.The OSWPF-RLS algorithm uses the human body joint data obtained under the HRC task as input,and uses recursive least squares(RLS)to predict the human movement trajectories within the time window.Then,the optimized sliding window polynomial fitting(OSWPF)is used to calculate the multi-step prediction value,and the increment of multi-step prediction value was appropriately constrained.Experimental results show that compared with the existing benchmark algorithms,the OSWPF-RLS algorithm improved the multi-step prediction accuracy of human motion and enhanced the ability to respond to different human movements.展开更多
We present an integrated stand-alone software package named KaKs_Calculator 2.0 as an updated version. It incorporates 17 methods for the calculation of nonsynonymous and synonymous substitution rates; among them, we ...We present an integrated stand-alone software package named KaKs_Calculator 2.0 as an updated version. It incorporates 17 methods for the calculation of nonsynonymous and synonymous substitution rates; among them, we added our modified versions of several widely used methods as the gamma series including y-NG, y-LWL, ),-MLWL, y-LPB, y-MLPB, y-YN and y-MYN, which have been demonstrated to perform better under certain conditions than their original forms and are not implemented in the previous version. The package is readily used for the identification of positively selected sites based on a sliding window across the sequences of interests in 5' to 3' direction of protein-coding sequences, and have improved the overall performance on sequence analysis for evolution studies. A toolbox, including C++ and Java source code and executable files on both Windows and Linux platforms together with a user instruction, is downloadable from the website for academic purpose at https://sourceforge.net/projects/kakscalculator2/.展开更多
Outlier detection is a very useful technique in many applications, where data is generally uncertain and could be described using probability. While having been studied intensively in the field of deterministic data, ...Outlier detection is a very useful technique in many applications, where data is generally uncertain and could be described using probability. While having been studied intensively in the field of deterministic data, outlier detection is still novel in the emerging uncertain data field. In this paper, we study the semantic of outlier detection on probabilistic data stream and present a new definition of distance-based outlier over sliding window. We then show the problem of detecting an outlier over a set of possible world instances is equivalent to the problem of finding the k-th element in its neighborhood. Based on this observation, a dynamic programming algorithm (DPA) is proposed to reduce the detection cost from 0(2IR(~'d)l) to O(Ik.R(e, d)l), where R(e, d) is the d-neighborhood of e. Furthermore, we propose a pruning-based approach (PBA) to effectively and efficiently filter non-outliers on single window, and dynamically detect recent m elements incrementally. Finally, detailed analysis and thorough experimental results demonstrate the efficiency and scalability of our approach.展开更多
Detecting duplicates in data streams is an important problem that has a wide range of applications. In general, precisely detecting duplicates in an unbounded data stream is not feasible in most streaming scenarios, a...Detecting duplicates in data streams is an important problem that has a wide range of applications. In general, precisely detecting duplicates in an unbounded data stream is not feasible in most streaming scenarios, and, on the other hand, the elements in data streams are always time sensitive. These make it particular significant approximately detecting duplicates among newly arrived elements of a data stream within a fixed time frame. In this paper, we present a novel data structure, Decaying Bloom Filter (DBF), as an extension of the Counting Bloom Filter, that effectively removes stale elements as new elements continuously arrive over sliding windows. On the DBF basis we present an efficient algorithm to approximately detect duplicates over sliding windows. Our algorithm may produce false positive errors, but not false negative errors as in many previous results. We analyze the time complexity and detection accuracy, and give a tight upper bound of false positive rate. For a given space G bits and sliding window size W, our algorithm has an amortized time complexity of O(√G/W). Both analytical and experimental results on synthetic data demonstrate that our algorithm is superior in both execution time and detection accuracy to the previous results.展开更多
Differential privacy has recently become a widely recognized strict privacy protection model of data release.Differential privacy histogram publishing can directly show the statistical data distribution under the prem...Differential privacy has recently become a widely recognized strict privacy protection model of data release.Differential privacy histogram publishing can directly show the statistical data distribution under the premise of ensuring user privacy for data query,sharing,and analysis.The dynamic data release is a study with a wide range of current industry needs.However,the amount of data varies considerably over different periods.Unreasonable data processing will result in the risk of users’information leakage and unavailability of the data.Therefore,we designed a differential privacy histogram publishing method based on the dynamic sliding window of LSTM(DPHP-DL),which can improve data availability on the premise of guaranteeing data privacy.DPHP-DL is integrated by DSW-LSTM and DPHK+.DSW-LSTM updates the size of sliding windows based on data value prediction via long shortterm memory(LSTM)networks,which evenly divides the data stream into several windows.DPHK+heuristically publishes non-isometric histograms based on k-mean++clustering of automatically obtaining the optimal K,so as to achieve differential privacy histogram publishing of dynamic data.Extensive experiments on real-world dynamic datasets demonstrate the superior performance of the DPHP-DL.展开更多
Continuous top-k query over sliding window is a fundamental problem in database, which retrieves k objects with the highest scores when the window slides. Existing studies mainly adopt exact algorithms to tackle this ...Continuous top-k query over sliding window is a fundamental problem in database, which retrieves k objects with the highest scores when the window slides. Existing studies mainly adopt exact algorithms to tackle this type of queries, whose key idea is to maintain a subset of objects in the window, and try to retrieve answers from it. However, all the existing algorithms are sensitive to query parameters and data distribution. In addition, they suffer from expensive overhead for incremental maintenance, and thus cannot satisfy real-time requirement. In this paper, we define a novel query named (ε, δ)-approximate continuous top-κ query, which returns approximate answers for top-κ query. In order to efficiently support this query, we propose an efficient framework, named PABF (Probabilistic Approximate Based Framework), to support approximate top-κ query over sliding window. We firstly maintain a self-adaptive pruning value, which could filter out newly arrived objects who have a probability less than 1 - 5 of being a query result. For those objects that are not filtered, we combine them together, if the score difference among them is less than a threshold. To efficiently maintain these combined results, the framework PABF also proposes a multi-phase merging algorithm. Theoretical analysis indicates that even in the worst case, we require only logarithmic complexity for maintaining each candidate.展开更多
Regarding the performance of traditional endpoint detection algorithms degrades as the environment noise level increases, a recursive calculating algorithm for higher-order cu- mulants over a sliding window is propose...Regarding the performance of traditional endpoint detection algorithms degrades as the environment noise level increases, a recursive calculating algorithm for higher-order cu- mulants over a sliding window is proposed. Then it is applied to the speech endpoint detection. Furthermore, endpoint detection is carried out with the feature of energy. Experimental results show that both the computational efficiency and the robustness against noise of the proposed algorithm are improved remarkably compared with traditional algorithm. The average prob- ability of correct point detection (Pc-point) of the proposed voice activity detection (VAD) is 6.07% higher than that of G.729b VAD in different noisy at different signal-noise ratios (SNRs) environments.展开更多
基金supported by the National Natural Science Foundation of China (No.62275193)。
文摘In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.
基金supported by the National Undergraduate Innovation and Entrepreneurship Training Program of China(Project No.202510559076)at Jinan University,a nationwide initiative administered by the Ministry of Educationthe National Natural Science Foundation of China(NSFC)under Grant No.62172189.
文摘Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.
基金supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ20F020004in part by the National College Student Innovation and Research Training Program under Grant 202313283002.
文摘With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.
基金Supported by Discipline-Crossing Research Foundation of Huazhong Agricultural University(2008XKJC006)the Fundamental Research Funds for the Central Universities of China
文摘We extract some physical and chemical features re-lated to the occurrence of single nucleotide polymorphism (SNP) from three groups of sliding windows around SNP site,and then make the predictions about accuracy by using radial basis function (RBF) networks. The result of the forward sliding windows sug-gests that the accuracies and Matthews correlation coefficient (MCC values) ascend with the increasing of length of sliding windows. The accuracies range from 73.27 % to 80.69 %,and MCC values range from 0.465 to 0.614. The backward sliding windows and the sliding windows with fixed length three are de-signed to find the crucial sites related to SNP. The results imply that the occurrence possibility of SNP relies heavily on the above physical and chemical features of sites which are at a distance around 20 bases from the SNP site. Compared with the support vector machine (SVM),our RBF network approach has achieved more satisfactory results.
基金Supported by the National Natural Science Foun-dation of China (60403027)
文摘This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective.
基金Fundamental Research Funds for the Central Universities of Ministry of Education of China。
文摘Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.
基金Supported by the National Natural Science Foun-dation of China (60573089) the National 985 Project Fundation(985-2-DB-Y01)
文摘How to process aggregate queries over data streams efficiently and effectively have been becoming hot re search topics in both academic community and industrial community. Aiming at the issues, a novel Linked-tree algorithm based on sliding window is proposed in this paper. Due to the proposal of concept area, the Linked-tree algorithm reuses many primary results in last window and then avoids lots of unnecessary repeated comparison operations between two successive windows. As a result, execution efficiency of MAX query is improved dramatically. In addition, since the size of memory is relevant to the number of areas but irrelevant to the size of sliding window, memory is economized greatly. The extensive experimental results show that the performance of Linked-tree algorithm has significant improvement gains over the traditional SC (Simple Compared) algorithm and Ranked-tree algorithm.
基金Supported by the National Natural Science Foun-dation of China (60473073)
文摘Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input streams are restricted to finite memory due to sliding window constraints. So far, non-indexed and indexed stream equijoin algorithms based on sliding windows have been proposed in many literatures. However, none of them takes non-equijoin into consideration. In many eases, non-equijoin queries occur frequently. Hence, it is worth to discuss how to process non-equijoin queries effectively and efficiently. In this paper, we propose an indexed join algorithm for supporting non-equijoin queries. The experimental results show that our indexed non-equijoin techniques are more efficient than those without index.
基金This research was funded by the National Key R&D Program of China(No.2018YFB2100603)the Key R&D Program of Hubei Province(No.2022BAA048)+2 种基金the National Natural Science Foundation of China program(No.41890822)the Open Fund of National Engineering Research Centre for Geographic Information System,China University of Geosciences,Wuhan 430074,China(No.2022KFJJ07)The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Centre of Wuhan University.
文摘To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s pH value is 6.0–8.5.The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard.This paper aims to study the deep learning prediction model of wastewater’s pH.Firstly,the research uses the random forest method to select the data features and then,based on the sliding window,convert the data set into a time series which is the input of the deep learning training model.Secondly,by analyzing and comparing relevant references,this paper believes that the CNN(Convolutional Neural Network)model is better at nonlinear data modeling and constructs a CNN model including the convolution and pooling layers.After alternating the combination of the convolutional layer and pooling layer,all features are integrated into a full-connected neural network.Thirdly,the number of input samples of the CNN model directly affects the prediction effect of the model.Therefore,this paper adopts the sliding window method to study the optimal size.Many experimental results show that the optimal prediction model can be obtained when alternating six convolutional layers and three pooling layers.The last full-connection layer contains two layers and 64 neurons per layer.The sliding window size selects as 12.Finally,the research has carried out data prediction based on the optimal CNN deep learning model.The predicted pH of the sewage is between 7.2 and 8.6 in this paper.The result is applied in the monitoring system platform of the“Intelligent operation and maintenance platform of the reclaimed water plant.”
基金Supported in part by the National Natural Science Foundation of China(61301091)the Natural Science Basic Research Plan in Shaanxi Province of China(2015JQ6262)+1 种基金the Open Foundation of State Key Laboratory of Information Security(2015-MS-14)the New Star Team of Xi’an University of Posts&Telecommunications
文摘In order to improve the efficiency of the fingerprint core location algorithm, a fingerprint core location method using sliding window on the basis of core location algorithm with the complex filter was proposed. The local region of the fingerprint image was extracted by a fixed-size window sliding in the region of the fingerprint image, and the selected local region by window as the calculation object is used to detect the core. The experiment results show that the method cannot only effectively detect fingerprint core, but also improve the efficiency of the detection algorithm comparing with the global fingerprint core location detection algorithm.
基金supported by the National Natural Science Foundation of China(Nos.12271259 and 12371352)the Zhejiang Provincial Natural Science Foundation of China(No.LY23A010011)+1 种基金the Yongjiang Talent Introduction Programme of Ningbo(No.2021B-011-G)the Natural Sciences and Engineering Research Council of Canada(NSERC)(No.06446).
文摘Submodular function maximization problem has been extensively studied recently.A natural variant of submodular function is k-submodular function,which has many applications in real life,such as influence maximization and sensor placement problem.The domain of a k-submodular function has k disjoint subsets,and hence includes submodular function as a special case when k=1.This work investigates the k-submodular function maximization problem with d-knapsack constraints over the sliding window.Based on the smooth histogram technique,we design a deterministic approximation algorithm.Furthermore,we propose a randomized algorithm to improve the approximation ratio.
基金co-supported by the National Natural Science Foundation of China(Nos.52272403,52402506)Natural Science Basic Research Program of Shaanxi,China(Nos.2022JC-27,2023-JC-QN-0599)。
文摘The reliable,rapid,and accurate Remaining Useful Life(RUL)prognostics of aircraft power supply and distribution system are essential for enhancing the reliability and stability of system and reducing the life-cycle costs.To achieve the reliable,rapid,and accurate RUL prognostics,the balance between accuracy and computational burden deserves more attention.In addition,the uncertainty is intrinsically present in RUL prognostic process.Due to the limitation of the uncertainty quantification,the point-wise prognostics strategy is not trustworthy.A Dual Adaptive Sliding-window Hybrid(DASH)RUL probabilistic prognostics strategy is proposed to tackle these deficiencies.The DASH strategy contains two adaptive mechanisms,the adaptive Long Short-Term Memory-Polynomial Regression(LSTM-PR)hybrid prognostics mechanism and the adaptive sliding-window Kernel Density Estimation(KDE)probabilistic prognostics mechanism.Owing to the dual adaptive mechanisms,the DASH strategy can achieve the balance between accuracy and computational burden and obtain the trustworthy probabilistic prognostics.Based on the degradation dataset of aircraft electromagnetic contactors,the superiority of DASH strategy is validated.In terms of probabilistic,point-wise and integrated prognostics performance,the proposed strategy increases by 66.89%,81.73% and 25.84%on average compared with the baseline methods and their variants.
基金supported by the Program for Synergy Innovation in the Anhui Higher Education Institutions of China(No.GXXT-2020-012)the National Natural Science Foundation of China(No.62172003)+2 种基金the Anhui Provincial Natural Science Foundation(No.2108085MF218)the Anhui Province University Natural Science Research Project(No.2022AH040052)the Science and Technology Innovation Program of Ma’anshan,China(No.2021a120009).
文摘Continuously publishing histograms in data streams is crucial to many real-time applications,as it provides not only critical statistical information,but also reduces privacy leaking risk.As the importance of elements usually decreases over time in data streams,in this paper we model a data stream by a sequence of weighted sliding windows,and then study how to publish histograms over these windows continuously.The existing literature can hardly solve this problem in a real-time way,because they need to buffer all elements in each sliding window,resulting in high computational overhead and prohibitive storage burden.In this paper,we overcome this drawback by proposing an online algorithm denoted by Efficient Streaming Histogram Publishing(ESHP)to continuously publish histograms over weighted sliding windows.Specifically,our method first creates a novel sketching structure,called Approximate-Estimate Sketch(AESketch),to maintain the counting information of each histogram interval at every time instance;then,it creates histograms that satisfy the differential privacy requirement by smartly adding appropriate noise values into the sketching structure.Extensive experimental results and rigorous theoretical analysis demonstrate that the ESHP method can offer equivalent data utility with significantly lower computational overhead and storage costs when compared to other existing methods.
基金supported by the National Natural Science Foundation of China(61701270)the Young Doctor Cooperation Foundation of Qilu University of Technology(Shandong Academy of Sciences)(2017BSHZ008)。
文摘Human motion prediction is a critical issue in human-robot collaboration(HRC)tasks.In order to reduce the local error caused by the limitation of the capture range and sampling frequency of the depth sensor,a hybrid human motion prediction algorithm,optimized sliding window polynomial fitting and recursive least squares(OSWPF-RLS)was proposed.The OSWPF-RLS algorithm uses the human body joint data obtained under the HRC task as input,and uses recursive least squares(RLS)to predict the human movement trajectories within the time window.Then,the optimized sliding window polynomial fitting(OSWPF)is used to calculate the multi-step prediction value,and the increment of multi-step prediction value was appropriately constrained.Experimental results show that compared with the existing benchmark algorithms,the OSWPF-RLS algorithm improved the multi-step prediction accuracy of human motion and enhanced the ability to respond to different human movements.
基金funded by the National Basic Research Program of China (973 Program) to JY (Grant No.2006CB910404)
文摘We present an integrated stand-alone software package named KaKs_Calculator 2.0 as an updated version. It incorporates 17 methods for the calculation of nonsynonymous and synonymous substitution rates; among them, we added our modified versions of several widely used methods as the gamma series including y-NG, y-LWL, ),-MLWL, y-LPB, y-MLPB, y-YN and y-MYN, which have been demonstrated to perform better under certain conditions than their original forms and are not implemented in the previous version. The package is readily used for the identification of positively selected sites based on a sliding window across the sequences of interests in 5' to 3' direction of protein-coding sequences, and have improved the overall performance on sequence analysis for evolution studies. A toolbox, including C++ and Java source code and executable files on both Windows and Linux platforms together with a user instruction, is downloadable from the website for academic purpose at https://sourceforge.net/projects/kakscalculator2/.
基金supported by the National Natural Science Foundation of China under Grant Nos. 60973020, 60828004,and 60933001the Program for New Century Excellent Talents in University of China under Grant No. NCET-06-0290the Fundamental Research Funds for the Central Universities under Grant No. N090504004
文摘Outlier detection is a very useful technique in many applications, where data is generally uncertain and could be described using probability. While having been studied intensively in the field of deterministic data, outlier detection is still novel in the emerging uncertain data field. In this paper, we study the semantic of outlier detection on probabilistic data stream and present a new definition of distance-based outlier over sliding window. We then show the problem of detecting an outlier over a set of possible world instances is equivalent to the problem of finding the k-th element in its neighborhood. Based on this observation, a dynamic programming algorithm (DPA) is proposed to reduce the detection cost from 0(2IR(~'d)l) to O(Ik.R(e, d)l), where R(e, d) is the d-neighborhood of e. Furthermore, we propose a pruning-based approach (PBA) to effectively and efficiently filter non-outliers on single window, and dynamically detect recent m elements incrementally. Finally, detailed analysis and thorough experimental results demonstrate the efficiency and scalability of our approach.
基金supported by the "Hundred Talents Program" of CAS and the National Natural Science Foundation of China under Grant No. 60772034.
文摘Detecting duplicates in data streams is an important problem that has a wide range of applications. In general, precisely detecting duplicates in an unbounded data stream is not feasible in most streaming scenarios, and, on the other hand, the elements in data streams are always time sensitive. These make it particular significant approximately detecting duplicates among newly arrived elements of a data stream within a fixed time frame. In this paper, we present a novel data structure, Decaying Bloom Filter (DBF), as an extension of the Counting Bloom Filter, that effectively removes stale elements as new elements continuously arrive over sliding windows. On the DBF basis we present an efficient algorithm to approximately detect duplicates over sliding windows. Our algorithm may produce false positive errors, but not false negative errors as in many previous results. We analyze the time complexity and detection accuracy, and give a tight upper bound of false positive rate. For a given space G bits and sliding window size W, our algorithm has an amortized time complexity of O(√G/W). Both analytical and experimental results on synthetic data demonstrate that our algorithm is superior in both execution time and detection accuracy to the previous results.
基金supported by the National Nature Science Foundation of China(Grant Nos.91546108,and 71490725)the AnhuiProvincial Scienceand Technology Major Projects(201903a05020020)+2 种基金the Anhui Provincial Natural Science Foundation(1908085QG298)the Fundamental Research Funds for the Central Universities(JZ2019HGTA0053,JZ2019 HGBZ0128)the Open Research Fund Program of Key Laboratory of Process Optimization and Intelligent Decision-making,Ministry of Education,China.
文摘Differential privacy has recently become a widely recognized strict privacy protection model of data release.Differential privacy histogram publishing can directly show the statistical data distribution under the premise of ensuring user privacy for data query,sharing,and analysis.The dynamic data release is a study with a wide range of current industry needs.However,the amount of data varies considerably over different periods.Unreasonable data processing will result in the risk of users’information leakage and unavailability of the data.Therefore,we designed a differential privacy histogram publishing method based on the dynamic sliding window of LSTM(DPHP-DL),which can improve data availability on the premise of guaranteeing data privacy.DPHP-DL is integrated by DSW-LSTM and DPHK+.DSW-LSTM updates the size of sliding windows based on data value prediction via long shortterm memory(LSTM)networks,which evenly divides the data stream into several windows.DPHK+heuristically publishes non-isometric histograms based on k-mean++clustering of automatically obtaining the optimal K,so as to achieve differential privacy histogram publishing of dynamic data.Extensive experiments on real-world dynamic datasets demonstrate the superior performance of the DPHP-DL.
基金This work is partially supported by the National Natural Science Fund for Distinguish Young Scholars of China under Grant No. 61322208, the National Basic Research 973 Program of China under Grant No. 2012CB316201, the National Natural Science Foundation of China under Grant Nos. 61272178 and 61572122, and the Key Program of the National Natural Science Foundation of China under Grant No. 61532021.
文摘Continuous top-k query over sliding window is a fundamental problem in database, which retrieves k objects with the highest scores when the window slides. Existing studies mainly adopt exact algorithms to tackle this type of queries, whose key idea is to maintain a subset of objects in the window, and try to retrieve answers from it. However, all the existing algorithms are sensitive to query parameters and data distribution. In addition, they suffer from expensive overhead for incremental maintenance, and thus cannot satisfy real-time requirement. In this paper, we define a novel query named (ε, δ)-approximate continuous top-κ query, which returns approximate answers for top-κ query. In order to efficiently support this query, we propose an efficient framework, named PABF (Probabilistic Approximate Based Framework), to support approximate top-κ query over sliding window. We firstly maintain a self-adaptive pruning value, which could filter out newly arrived objects who have a probability less than 1 - 5 of being a query result. For those objects that are not filtered, we combine them together, if the score difference among them is less than a threshold. To efficiently maintain these combined results, the framework PABF also proposes a multi-phase merging algorithm. Theoretical analysis indicates that even in the worst case, we require only logarithmic complexity for maintaining each candidate.
基金supported by the National Natural Science Eoundation of China(61271352)
文摘Regarding the performance of traditional endpoint detection algorithms degrades as the environment noise level increases, a recursive calculating algorithm for higher-order cu- mulants over a sliding window is proposed. Then it is applied to the speech endpoint detection. Furthermore, endpoint detection is carried out with the feature of energy. Experimental results show that both the computational efficiency and the robustness against noise of the proposed algorithm are improved remarkably compared with traditional algorithm. The average prob- ability of correct point detection (Pc-point) of the proposed voice activity detection (VAD) is 6.07% higher than that of G.729b VAD in different noisy at different signal-noise ratios (SNRs) environments.