This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophagea...This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophageal reflux disease(GERD)monitoring.Unlike conventional approaches limited to four basic postures,CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions,providing enhanced resolution for personalized health assessment.The architecture introduces a unique integration of three complementary components:1D Convolutional Neural Networks(1D-CNN)for efficient local spatial feature extraction,Gated Recurrent Units(GRU)to capture short-termtemporal dependencieswith reduced computational complexity,and Bidirectional Long Short-Term Memory(Bi-LSTM)networks for modeling long-term temporal context in both forward and backward directions.This complementary integration allows the model to better represent dynamic and contextual information inherent in the sensor data,surpassing the performance of simpler or previously published hybrid models.Experiments were conducted on a benchmark dataset consisting of 18 volunteers(age range:19–24 years,mean 20.56±1.1 years;height 164.78±8.18 cm;weight 55.39±8.30 kg;BMI 20.24±2.04),monitored via a single abdominal accelerometer.A subjectindependent evaluation protocol with multiple random splits was employed to ensure robustness and generalizability.The proposed model achieves an average Accuracy of 87.60% and F1-score of 83.38%,both reported with standard deviations over multiple runs,outperforming several baseline and state-of-the-art methods.By releasing the dataset publicly and detailing themodel design,this work aims to facilitate reproducibility and advance research in sleep posture classification for clinical applications.展开更多
Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challeng...Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challenging because of the complex nature of the human body and variations in sleep patterns.Consequently,this study introduces an innovative method utilizing RGB and thermal cameras for comprehensive posture classification,thereby enhancing the analysis of body position and comfort.This method begins by capturing a dataset of sleep postures in the form of videos using RGB and thermal cameras,which depict six commonly adopted postures:supine,left log,right log,prone head,prone left,and prone right.The study involves 10 participants under two conditions:with and without blankets.Initially,the database is normalized into a video frame.The subsequent step entails training a fine-tuned,pretrained Visual Geometry Group(VGG16)and ResNet50 model.In the third phase,the extracted features are utilized for classification.The fourth step of the proposed approach employs a serial fusion technique based on the normal distribution to merge the vectors derived from both the RGB and thermal datasets.Finally,the fused vectors are passed to machine learning classifiers for final classification.The dataset,which includes human sleep postures used in this study’s experiments,achieved a 96.7%accuracy rate using the Quadratic Support Vector Machine(QSVM)without the blanket.Moreover,the Linear SVM,when utilized with a blanket,attained an accuracy of 96%.When normal distribution serial fusion was applied to the blanket features,it resulted in a remarkable average accuracy of 99%.展开更多
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number:NCUD.02-2024.11.
文摘This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophageal reflux disease(GERD)monitoring.Unlike conventional approaches limited to four basic postures,CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions,providing enhanced resolution for personalized health assessment.The architecture introduces a unique integration of three complementary components:1D Convolutional Neural Networks(1D-CNN)for efficient local spatial feature extraction,Gated Recurrent Units(GRU)to capture short-termtemporal dependencieswith reduced computational complexity,and Bidirectional Long Short-Term Memory(Bi-LSTM)networks for modeling long-term temporal context in both forward and backward directions.This complementary integration allows the model to better represent dynamic and contextual information inherent in the sensor data,surpassing the performance of simpler or previously published hybrid models.Experiments were conducted on a benchmark dataset consisting of 18 volunteers(age range:19–24 years,mean 20.56±1.1 years;height 164.78±8.18 cm;weight 55.39±8.30 kg;BMI 20.24±2.04),monitored via a single abdominal accelerometer.A subjectindependent evaluation protocol with multiple random splits was employed to ensure robustness and generalizability.The proposed model achieves an average Accuracy of 87.60% and F1-score of 83.38%,both reported with standard deviations over multiple runs,outperforming several baseline and state-of-the-art methods.By releasing the dataset publicly and detailing themodel design,this work aims to facilitate reproducibility and advance research in sleep posture classification for clinical applications.
基金supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(Grant Number:H12C1831)+2 种基金Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea Government(MOTIE)(P0012724,HRD Program for Industrial Innovation)the National Research Foundation of Korea(NRF)Grant funded by the Korea Government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challenging because of the complex nature of the human body and variations in sleep patterns.Consequently,this study introduces an innovative method utilizing RGB and thermal cameras for comprehensive posture classification,thereby enhancing the analysis of body position and comfort.This method begins by capturing a dataset of sleep postures in the form of videos using RGB and thermal cameras,which depict six commonly adopted postures:supine,left log,right log,prone head,prone left,and prone right.The study involves 10 participants under two conditions:with and without blankets.Initially,the database is normalized into a video frame.The subsequent step entails training a fine-tuned,pretrained Visual Geometry Group(VGG16)and ResNet50 model.In the third phase,the extracted features are utilized for classification.The fourth step of the proposed approach employs a serial fusion technique based on the normal distribution to merge the vectors derived from both the RGB and thermal datasets.Finally,the fused vectors are passed to machine learning classifiers for final classification.The dataset,which includes human sleep postures used in this study’s experiments,achieved a 96.7%accuracy rate using the Quadratic Support Vector Machine(QSVM)without the blanket.Moreover,the Linear SVM,when utilized with a blanket,attained an accuracy of 96%.When normal distribution serial fusion was applied to the blanket features,it resulted in a remarkable average accuracy of 99%.