Carbon sequestration in forests is of great interest due to concerns about global climate change.Carbon storage rates depend on ecosystem fluxes(photosynthesis and ecosystem respiration),typically quantified as net ...Carbon sequestration in forests is of great interest due to concerns about global climate change.Carbon storage rates depend on ecosystem fluxes(photosynthesis and ecosystem respiration),typically quantified as net ecosystem exchange(NEE).Methods to estimate forest NEE without intensive site sampling are needed to accurately assess rates of carbon sequestration at stand-level and larger scales.We produced spatially-explicit estimates of NEE for 9 770 ha of slash pine(Pinus elliottii) plantations in North-Central Florida for a single year by coupling remote sensing-based estimates of leaf area index(LAI) with a process-based growth simulation model.LAI estimates produced from a neural-network modeling of ground plot and Landsat TM satellite data had a mean of 1.06(range 0-3.93,including forest edges).Using the neural network LAI values as inputs,the slash pine simulation model(SPM2) estimates of NEE ranged from-5.52 to 11.06 Mg·ha^-1·a^-1with a mean of 3.47 Mg·ha^-1·a^-1Total carbon storage for the year was 33920 t,or about 3.5 tons per hectare.Both estimated LAI and NEE were highly sensitive to fertilization.展开更多
During 1991~1995, the growth responses of young slash pine to N, P and K fertilizers and rational rate and ratio of fertilizers in yellow-red soil at Fengshushan Forest Farm, Jiangxi Province were studied. N fertilize...During 1991~1995, the growth responses of young slash pine to N, P and K fertilizers and rational rate and ratio of fertilizers in yellow-red soil at Fengshushan Forest Farm, Jiangxi Province were studied. N fertilizer decreased the growth of slash pine, while P not only significantly improved the increment of bottom diameter, height and crown diameter, but also caused earlier canopy closure of the stand. It also had a sustainable effect in the next two years. Slash pine had the most significant response to the treatment of 200 kg P2O5 ha-1, in which tree height, bottom diameter and crown diameter (EW and SN) were increased by 22%, 35%, 20% and 18% in 1994, 21%, 25%, 10% and 10% in 1995, respectively, compared to the control.Although there was no remarkable response to K fertilizer, good growth response to the application of 100 kg P2O5 plus 100 kg K2O ha-1 existed and tree height, bottom diameter and crown diameter (EW and SN)were increased by 31%, 14%, 23% and 21%, respectively, in 1993, compared to the control.展开更多
Slash pine(Pinus elliottii Engelm.var.elliottii)is a resin-producing species grown worldwide for significant economic benefits for wood production.Resin tapping cre-ates a carbon sink at the expense of carbon allocati...Slash pine(Pinus elliottii Engelm.var.elliottii)is a resin-producing species grown worldwide for significant economic benefits for wood production.Resin tapping cre-ates a carbon sink at the expense of carbon allocation for growth and consequently,wood production may be reduced.Non-structural carbohydrates comprising starch and sugars stored in plant organs,may serve as intermediate pools between assimilation and utilisation.However,the effect of resin tapping between tree growth and non-structural carbo-hydrates is not well understood.This study investigated(1)the effects of resin tapping on radial growth,(2)the effects of resin tapping on non-structural carbohydrate pools in different compartments,and(3)the feasibility of resin pro-duction without disruption of tree growth.Twenty one-year-old slash pines were subjected to resin tapping over two suc-cessive years.Non-structural carbohydrate concentrations in needles,branches,stem phloem,and roots of tapped and untapped trees in summer and winter were determined after the second year of resin harvest.The results showed that tapping had no significant effects on annual increments.Starch was the dominant non-structural carbohydrate frac-tion,regardless of tissues and season,and constituted up to 99%of the total non-structural carbohydrates in the phloem and roots.Glucose and fructose were the dominant sugars;sucrose was negligible.Compared with the controls,tapped trees showed 26%lower non-structural carbohydrate concen-tration in the phloem above the tapping wound in summer,which was attributable to the decreased abundance of starch,glucose,fructose,and sucrose.In winter,the altered non-structural carbohydrate profiles in the phloem above the tap-ping wounding were minimised as a result of recovery of the sugar concentrations.In contrast to free sugars,which accu-mulated substantially in needles and branches during winter,starch was enriched in the phloem,roots,and current-year needles.The results provide evidence for a localised effect of resin tapping,and highlight the observation that resin extrac-tion does not always cause a sacrifice in wood growth under a moderate resin-tapping intensity in slash pine plantations.展开更多
The new shoot density of slash pine serves as a vital indicator for assessing its growth and photosynthetic capacity,while the number of new shoots offers an intuitive reflection of this density.With deep learning met...The new shoot density of slash pine serves as a vital indicator for assessing its growth and photosynthetic capacity,while the number of new shoots offers an intuitive reflection of this density.With deep learning methods becoming increasingly popular,automated counting of new shoots has greatly improved in recent years but is still limited by tedious and expensive data collection and labeling.To resolve these issues,this paper proposes a semi-supervised counting network(MTSC-Net)for estimating the number of slash pine new shoots.First,based on the mean-teacher framework,we introduce the improved VGG19 to extract multiscale new shoot features.Second,to connect local new shoot feature information with global channel features,attention feature fusion module is introduced to achieve effective feature fusion.Finally,the new shoot density map and density probability distribution are processed in a fine-grained manner through multiscale dilated convolution of the regression head and classification head.In addition,a masked image modeling strategy is introduced to encourage the contextual understanding of global new shoot features and improve the counting performance.The experimental results show that MTSC-Net outperforms other semi-supervised counting models with labeled percentages ranging from 5%to 50%.When the labeled percentage is 5%,the mean absolute error and root mean square error are 17.71 and 25.49,respectively.These findings demonstrate that our work can be used as an efficient semi-supervised counting method to provide automated support for tree breeding and genetic utilization.展开更多
采用开顶式气室(open top chambers,OTCs)装置,研究O3浓度增加(E-O3,约150 nL.L-1)对湿地松幼苗的影响,包括伤害症状、植株生长、针叶光合色素含量、气体交换速率与叶绿素荧光、丙二醛(MDA)以及主要抗氧化剂含量变化.经过E-O3处理一个...采用开顶式气室(open top chambers,OTCs)装置,研究O3浓度增加(E-O3,约150 nL.L-1)对湿地松幼苗的影响,包括伤害症状、植株生长、针叶光合色素含量、气体交换速率与叶绿素荧光、丙二醛(MDA)以及主要抗氧化剂含量变化.经过E-O3处理一个生长季后(AOT40值为38.24μL.L-1.h),湿地松幼苗当年生新叶与老叶呈现出伤害症状,而株高与基径生长、生物量累积与分配未出现显著变化;与对照相比,O3暴露对当年生针叶光合作用具有一定的抑制作用:净光合速率(Pn)、气孔导度(gs)与蒸腾速率(Tr)分别显著降低42.5%、48.2%与46.3%,而胞间CO2浓度(ci)与水分利用效率(WUE)、叶绿素荧光指标无显著变化;叶绿素a、叶绿素b与总叶绿素含量分别降低16.7%、21.1%与17.5%,叶片MDA含量、总还原能力、抗坏血酸与总酚含量均无显著变化.可见,光合色素含量的降低是E-O3引起湿地松幼苗针叶光合速率下降的主要原因.展开更多
基金supported by the United States Forest Service and the Forest Biology Research Cooperative at the University of Florida
文摘Carbon sequestration in forests is of great interest due to concerns about global climate change.Carbon storage rates depend on ecosystem fluxes(photosynthesis and ecosystem respiration),typically quantified as net ecosystem exchange(NEE).Methods to estimate forest NEE without intensive site sampling are needed to accurately assess rates of carbon sequestration at stand-level and larger scales.We produced spatially-explicit estimates of NEE for 9 770 ha of slash pine(Pinus elliottii) plantations in North-Central Florida for a single year by coupling remote sensing-based estimates of leaf area index(LAI) with a process-based growth simulation model.LAI estimates produced from a neural-network modeling of ground plot and Landsat TM satellite data had a mean of 1.06(range 0-3.93,including forest edges).Using the neural network LAI values as inputs,the slash pine simulation model(SPM2) estimates of NEE ranged from-5.52 to 11.06 Mg·ha^-1·a^-1with a mean of 3.47 Mg·ha^-1·a^-1Total carbon storage for the year was 33920 t,or about 3.5 tons per hectare.Both estimated LAI and NEE were highly sensitive to fertilization.
文摘During 1991~1995, the growth responses of young slash pine to N, P and K fertilizers and rational rate and ratio of fertilizers in yellow-red soil at Fengshushan Forest Farm, Jiangxi Province were studied. N fertilizer decreased the growth of slash pine, while P not only significantly improved the increment of bottom diameter, height and crown diameter, but also caused earlier canopy closure of the stand. It also had a sustainable effect in the next two years. Slash pine had the most significant response to the treatment of 200 kg P2O5 ha-1, in which tree height, bottom diameter and crown diameter (EW and SN) were increased by 22%, 35%, 20% and 18% in 1994, 21%, 25%, 10% and 10% in 1995, respectively, compared to the control.Although there was no remarkable response to K fertilizer, good growth response to the application of 100 kg P2O5 plus 100 kg K2O ha-1 existed and tree height, bottom diameter and crown diameter (EW and SN)were increased by 31%, 14%, 23% and 21%, respectively, in 1993, compared to the control.
基金The work was supported by the General Program of the National Natural Science Foundation of China(31,470,635)the Fundamental Research Funds of the Chinese Academy of Forestry(No.CAFYBB2017ZX001-3).
文摘Slash pine(Pinus elliottii Engelm.var.elliottii)is a resin-producing species grown worldwide for significant economic benefits for wood production.Resin tapping cre-ates a carbon sink at the expense of carbon allocation for growth and consequently,wood production may be reduced.Non-structural carbohydrates comprising starch and sugars stored in plant organs,may serve as intermediate pools between assimilation and utilisation.However,the effect of resin tapping between tree growth and non-structural carbo-hydrates is not well understood.This study investigated(1)the effects of resin tapping on radial growth,(2)the effects of resin tapping on non-structural carbohydrate pools in different compartments,and(3)the feasibility of resin pro-duction without disruption of tree growth.Twenty one-year-old slash pines were subjected to resin tapping over two suc-cessive years.Non-structural carbohydrate concentrations in needles,branches,stem phloem,and roots of tapped and untapped trees in summer and winter were determined after the second year of resin harvest.The results showed that tapping had no significant effects on annual increments.Starch was the dominant non-structural carbohydrate frac-tion,regardless of tissues and season,and constituted up to 99%of the total non-structural carbohydrates in the phloem and roots.Glucose and fructose were the dominant sugars;sucrose was negligible.Compared with the controls,tapped trees showed 26%lower non-structural carbohydrate concen-tration in the phloem above the tapping wound in summer,which was attributable to the decreased abundance of starch,glucose,fructose,and sucrose.In winter,the altered non-structural carbohydrate profiles in the phloem above the tap-ping wounding were minimised as a result of recovery of the sugar concentrations.In contrast to free sugars,which accu-mulated substantially in needles and branches during winter,starch was enriched in the phloem,roots,and current-year needles.The results provide evidence for a localised effect of resin tapping,and highlight the observation that resin extrac-tion does not always cause a sacrifice in wood growth under a moderate resin-tapping intensity in slash pine plantations.
基金supported by the Shandong Province Natural Science Foundation Youth Branch under grant ZR20-23QF016the Biological Breeding-Major projects(Grant no.2023ZD040580105)the Fundamental Research Funds of CAF(CAFYBB2022QA001).
文摘The new shoot density of slash pine serves as a vital indicator for assessing its growth and photosynthetic capacity,while the number of new shoots offers an intuitive reflection of this density.With deep learning methods becoming increasingly popular,automated counting of new shoots has greatly improved in recent years but is still limited by tedious and expensive data collection and labeling.To resolve these issues,this paper proposes a semi-supervised counting network(MTSC-Net)for estimating the number of slash pine new shoots.First,based on the mean-teacher framework,we introduce the improved VGG19 to extract multiscale new shoot features.Second,to connect local new shoot feature information with global channel features,attention feature fusion module is introduced to achieve effective feature fusion.Finally,the new shoot density map and density probability distribution are processed in a fine-grained manner through multiscale dilated convolution of the regression head and classification head.In addition,a masked image modeling strategy is introduced to encourage the contextual understanding of global new shoot features and improve the counting performance.The experimental results show that MTSC-Net outperforms other semi-supervised counting models with labeled percentages ranging from 5%to 50%.When the labeled percentage is 5%,the mean absolute error and root mean square error are 17.71 and 25.49,respectively.These findings demonstrate that our work can be used as an efficient semi-supervised counting method to provide automated support for tree breeding and genetic utilization.
文摘采用开顶式气室(open top chambers,OTCs)装置,研究O3浓度增加(E-O3,约150 nL.L-1)对湿地松幼苗的影响,包括伤害症状、植株生长、针叶光合色素含量、气体交换速率与叶绿素荧光、丙二醛(MDA)以及主要抗氧化剂含量变化.经过E-O3处理一个生长季后(AOT40值为38.24μL.L-1.h),湿地松幼苗当年生新叶与老叶呈现出伤害症状,而株高与基径生长、生物量累积与分配未出现显著变化;与对照相比,O3暴露对当年生针叶光合作用具有一定的抑制作用:净光合速率(Pn)、气孔导度(gs)与蒸腾速率(Tr)分别显著降低42.5%、48.2%与46.3%,而胞间CO2浓度(ci)与水分利用效率(WUE)、叶绿素荧光指标无显著变化;叶绿素a、叶绿素b与总叶绿素含量分别降低16.7%、21.1%与17.5%,叶片MDA含量、总还原能力、抗坏血酸与总酚含量均无显著变化.可见,光合色素含量的降低是E-O3引起湿地松幼苗针叶光合速率下降的主要原因.