期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of slab geometry and obliquity on the interplate thermal regime associated with the subduction of three-dimensionally curved oceanic plates 被引量:1
1
作者 Yingfeng Ji Shoichi Yoshioka 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第1期61-78,共18页
We investigated the relationships among slab geometry, obliquity, and the thermal regime associated with the subduction of oceanic plates using a three-dimensional (3D) parallelepiped thermal convection model. Vario... We investigated the relationships among slab geometry, obliquity, and the thermal regime associated with the subduction of oceanic plates using a three-dimensional (3D) parallelepiped thermal convection model. Various models with convex and concave slab shapes were constructed in the numerical simu- lation, and the temperature and mantle flow distributions were calculated. The results revealed that when the slab dip angle increases, or the obliquity of subduction becomes steeper, the interplate tem- perature decreases remarkably. Cooler (warmer) zones on the plate interface were identified from the modeling where there was a larger (smaller) subduction angle. Consequently, the interplate temperature distribution is partly controlled by the true subduction angle (TSA), which is a function of the slab dip angle and the obliquity of subduction. The rate of change of the interface temperature for the TSA was 10-50 ℃ (10°〈 TSA 〈 20°) at depths ranging from (TSA 10) × 5 km to 60 + (TSA 10) × 5 km for a fiat slab after a subduction history of 7 Myrs. The along-arc slab curvature affects the variation in TSA. The slab radius also appeared to influence the radius of induced mantle flow. 展开更多
关键词 TEMPERATURE Mantle flow Heat flow Numerical simulation slab geometry OBLIQUITY
在线阅读 下载PDF
Delaminated lower slab thermal regime before slab break-off in the Pamirs:Implications from 3D kinematic modeling
2
作者 Haris Faheem YingFeng Ji +6 位作者 Waqar Ahmed Rui Qu Ye Zhu Fitriani Fitriani Jun Yang Shoichi Yoshioka Nobuaki Suenaga 《Earth and Planetary Physics》 2026年第1期13-21,共9页
The intracontinental subduction of a>200-km-long section of the Tajik-Tarim lithosphere beneath the Pamir Mountains is proposed to explain nearly 30 km of shortening in the Tajik fold-thrust belt and the Pamir upli... The intracontinental subduction of a>200-km-long section of the Tajik-Tarim lithosphere beneath the Pamir Mountains is proposed to explain nearly 30 km of shortening in the Tajik fold-thrust belt and the Pamir uplift.Seismic imaging revealed that the upper slab was scraped and that the lower slab had subducted to a depth of>150 km.These features constitute the tectonic complexity of the Pamirs,as well as the thermal subduction mechanism involved,which remains poorly understood.Hence,in this study,high-resolution three-dimensional(3D)kinematic modeling is applied to investigate the thermal structure and geometry of the subducting slab beneath the Pamirs.The modeled slab configuration reveals distinct along-strike variations,with a steeply dipping slab beneath the southern Pamirs,a more gently inclined slab beneath the northern Pamirs,and apparent upper slab termination at shallow depths beneath the Pamirs.The thermal field reveals a cold slab core after delamination,with temperatures ranging from 400℃to 800℃,enveloped by a hotter mantle reaching~1400℃.The occurrence of intermediate-depth earthquakes aligns primarily with colder slab regions,particularly near the slab tear-off below the southwestern Pamirs,indicating a strong correlation between slab temperature and seismicity.In contrast,the northern Pamirs exhibit reduced seismicity at depth,which is likely associated with thermal weakening and delamination.The central Pamirs show a significant thermal anomaly caused by a concave slab,where the coldest crust does not descend deeply,further suggesting crustal detachment or mechanical failure.The lateral asymmetry in slab temperature possibly explains the mechanism of lateral tearing and differential slab-mantle coupling. 展开更多
关键词 PAMIRS SUBDUCTION 3D kinematic modeling slab geometry intermediate-depth earthquake crustal delamination seismicity distribution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部