When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by usin...When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation(i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided.展开更多
There has been increasing concern regarding the cosmetic aspects of skin in recent years. Computational simulation can be useful in understanding the mechanism underlying skin formation. The bottom of the epidermis is...There has been increasing concern regarding the cosmetic aspects of skin in recent years. Computational simulation can be useful in understanding the mechanism underlying skin formation. The bottom of the epidermis is called the basal layer and is very undulation. In this study, we focus on the basal layer formation. We created a particle model, which forms an undulation basal layer and regenerates the basal layer formation by numerical simulation. At first, two-dimensional basal layer formation without epidermal turnover was simulated. The results showed film shape changes and the stability, as a layer in the process of long-time with an increase and decrease of basal cells. Next, the model was applied to three-dimensional basal layer formation with epidermal turnover. As the structure of the basal layer was deformed, the upper structure of the epidermis comprising the cells divided from the basal layer also became irregular. The simulation results accurately represented and reproduced the three-dimensional basal layer formation and epidermis turnover process.展开更多
基金Project supported by the National Natural Science of China(Grant Nos.21434001,51561145002,and 11421110001)
文摘When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation(i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided.
文摘There has been increasing concern regarding the cosmetic aspects of skin in recent years. Computational simulation can be useful in understanding the mechanism underlying skin formation. The bottom of the epidermis is called the basal layer and is very undulation. In this study, we focus on the basal layer formation. We created a particle model, which forms an undulation basal layer and regenerates the basal layer formation by numerical simulation. At first, two-dimensional basal layer formation without epidermal turnover was simulated. The results showed film shape changes and the stability, as a layer in the process of long-time with an increase and decrease of basal cells. Next, the model was applied to three-dimensional basal layer formation with epidermal turnover. As the structure of the basal layer was deformed, the upper structure of the epidermis comprising the cells divided from the basal layer also became irregular. The simulation results accurately represented and reproduced the three-dimensional basal layer formation and epidermis turnover process.