The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio...The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model.展开更多
Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
Fluid-conveying pipes generally face combined excitations caused by periodic loads and random noises.Gaussian white noise is a common random noise excitation.This study investigates the random vibration response of a ...Fluid-conveying pipes generally face combined excitations caused by periodic loads and random noises.Gaussian white noise is a common random noise excitation.This study investigates the random vibration response of a simply-supported pipe conveying fluid under combined harmonic and Gaussian white noise excitations.According to the generalized Hamilton’s principle,the dynamic model of the pipe conveying fluid under combined harmonic and Gaussian white noise excitations is established.Subsequently,the averaged stochastic differential equations and Fokker–Planck–Kolmogorov(FPK)equations of the pipe conveying fluid subjected to combined excitations are acquired by the modified stochastic averaging method.The effectiveness of the analysis results is verified through the Monte Carlo method.The effects of fluid speed,noise intensity,amplitude of harmonic excitation,and damping factor on the probability density functions of amplitude,displacement,as well as velocity are discussed in detail.The results show that with an increase in fluid speed or noise intensity,the possible greatest amplitude for the fluid-conveying pipe increases,and the possible greatest displacement and velocity also increase.With an increase in the amplitude of harmonic excitation or damping factor,the possible greatest amplitude for the pipe decreases,and the possible greatest displacement and velocity also decrease.展开更多
In view of the difficulty in determining remaining useful life of plant new variety right in economic analysis, Weibull Survival Analysis Method and Gaussian Model to were used to study how to accurately estimate the ...In view of the difficulty in determining remaining useful life of plant new variety right in economic analysis, Weibull Survival Analysis Method and Gaussian Model to were used to study how to accurately estimate the remaining useful life of plant new variety right. The results showed that the average life of the granted rice varieties was 10.013 years. With the increase of the age of plant variety rights, the probability of the same residual life Ttreaching x was smaller and smaller, the reliability lower and lower, while the probability of the variety rights becoming invalid became greater. The remaining useful life of a specific granted rice variety was closely related to the demonstration promotion age when the granted rice variety reached its maximum area and the appearance of alternative varieties, and when the demonstration promotion age of the granted rice variety reaching the one with the maximum area, the promotion area would be decreased once a new alternative variety appeared, correspondingly with the shortening of the remaining useful life of the variety. Therefore, Weibull Survival Analysis Method and Gaussian Model could describe the remaining useful life's time trend, as well as determine the remaining useful life of a concrete plant variety right, clarify the entire life time of varieties rights, and make the economic analysis of plant new varieties rights more accurate and reasonable.展开更多
The relations between Gaussian function and Γ function is revealed first at one dimensional situation. Then, the Fourier transformation of n dimensional Gaussian function is deduced by a lemma. Following th...The relations between Gaussian function and Γ function is revealed first at one dimensional situation. Then, the Fourier transformation of n dimensional Gaussian function is deduced by a lemma. Following the train of thought in one dimensional situation, the relation between n dimensional Gaussian function and Γ function is given. By these, the possibility of arbitrary derivative of an n dimensional Gaussian function being a mother wavelet is indicated. The result will take some enlightening role in exploring the internal relations between Gaussian function and Γ function as well as in finding high dimensional mother wavelets.展开更多
Most existing algorithms for the underdetermined blind source separation(UBSS) problem are two-stage algorithm, i.e., mixing parameters estimation and sources estimation. In the mixing parameters estimation, the previ...Most existing algorithms for the underdetermined blind source separation(UBSS) problem are two-stage algorithm, i.e., mixing parameters estimation and sources estimation. In the mixing parameters estimation, the previously proposed traditional clustering algorithms are sensitive to the initializations of the mixing parameters. To reduce the sensitiveness to the initialization, we propose a new algorithm for the UBSS problem based on anechoic speech mixtures by employing the visual information, i.e., the interaural time difference(ITD) and the interaural level difference(ILD), as the initializations of the mixing parameters. In our algorithm, the video signals are utilized to estimate the distances between microphones and sources, and then the estimations of the ITD and ILD can be obtained. With the sparsity assumption in the time-frequency domain, the Gaussian potential function algorithm is utilized to estimate the mixing parameters by using the ITDs and ILDs as the initializations of the mixing parameters. And the time-frequency masking is used to recover the sources by evaluating the various ITDs and ILDs. Experimental results demonstrate the competitive performance of the proposed algorithm compared with the baseline algorithms.展开更多
In recent years, the use of Fuzzy set theory has been popularised for handling overlap domains in control engineering but this has mostly been within the context of triangular membership functions. In actual practice ...In recent years, the use of Fuzzy set theory has been popularised for handling overlap domains in control engineering but this has mostly been within the context of triangular membership functions. In actual practice however, such domains are hardly triangular and in fact for most engineering applications the membership functions are usually Gaussian and sometimes cosine. In an earlier paper, we derived explicit Fourier series expressions for systematic and dynamic computation of grade of membership in the overlap and non-overlap regions of triangular Fuzzy sets. In another paper, we extended the methodology to cover cases of cosine, exponential and Gaussian Fuzzy sets by presenting explicit Fourier series representation for encoding fuzziness in the overlap and non-overlap domains of Fuzzy sets. This current paper presents the development of a “Fuzzy Controller” device, which incorporates the formal mathematical representation for computing grade of membership of Gaussian and triangular Fuzzy sets. It is shown that triangular approximation of Gaussian membership function in Fuzzy control can lead to wrong linguistic classification which may have adverse effects on operational and control decisions. The development of the Fuzzy controller demonstrates that the proposed technique can indeed be incorporated in engineering systems for dynamic and systematic computation of grade of membership in the overlap and non-overlap regions of Fuzzy sets;and thus provides a basis for the design of embedded Fuzzy controller for mission critical applications.展开更多
Based on the statistical characteristics of energy spectrum and the features of spectrum-shifting in spectrometry,the parameter adjustment method of Gaussian function space was applied in the simulation of spectrum-sh...Based on the statistical characteristics of energy spectrum and the features of spectrum-shifting in spectrometry,the parameter adjustment method of Gaussian function space was applied in the simulation of spectrum-shifting.The transient characteristics of energy spectrum were described by the Gaussian function space,and then the Gaussian function space was transferred by parameter adjustment method.Furthermore,the spectrum-shifting in measurement of energy spectrum was simulated.The applied example shows that the parameters can be adjusted flexibly by this method to meet the various requirements in simulation of energy spectrum-shifting.This method was one parameterized simulation method with good performance for the practical application.展开更多
This study investigates seismic interferometry in which the Green's function is estimated between two receiv- ers by cross-correlation and integration over sources. For smoothly varying source strengths, the dominant...This study investigates seismic interferometry in which the Green's function is estimated between two receiv- ers by cross-correlation and integration over sources. For smoothly varying source strengths, the dominant contributions of the correlation integral come from the stationary phase directions in the forward and backward directions from the alignment of the two receivers. Gaussian beams can be used to evaluate the correlation integral and concentrate the amplitudes in a vicinity of the stationary phase regions instead of completely relying on phase interference. Several numerical examples are shown to illustrate how this process works. The use of Gaussian beams for the evaluation of the correlation integral results in stable estimates, and also provides physical insight into the estimation of the Green's function based on seismic interferometry.展开更多
The wavefunctions with a simple Gaussian form for the α-particle in the light nuclei have been used in some literatures.This note shows that this type of the α-particle wavefunction can not fit the experimental data...The wavefunctions with a simple Gaussian form for the α-particle in the light nuclei have been used in some literatures.This note shows that this type of the α-particle wavefunction can not fit the experimental data for electron scattering.展开更多
In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test stati...In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test statistic for the fixed effect is constructed.Secondly,using the Bootstrap approach and generalized approach,the one-sided hypothesis testing and interval estimation problems for the single variance component,the sum and ratio of variance components are discussed respectively.Further,the Monte Carlo simulation results indicate that the exact test statistic performs well in the one-sided hypothesis testing problem for the fixed effect.And the Bootstrap approach is better than the generalized approach in the one-sided hypothesis testing problems for variance component functions in most cases.Finally,the above approaches are applied to the real data examples of the consumer price index and value-added index of three industries to verify their rationality and effectiveness.展开更多
In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation ...In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation of the scattered data in the vertical deformation analysis.For the optimal selection of the shape parameter,which is crucial in the GRBF interpolation,two methods are used:the Power Gaussian Radial Basis Functions(PGRBF)and Leave One Out Cross Validation(LOOCV)(LGRBF).We compared the PGRBF and LGRBF to the traditional interpolation methods such as the Finite Element Method(FEM),polynomials,Moving Least Squares(MLS),and the usual GRBF in both the simulated and actual Interferometric Synthetic Aperture Radar(InSAR)data.The estimated results showed that the surface interpolation accuracy was greatly improved by LGRBF and PGRBF methods in comparison withFEM,polynomial,and MLS methods.Finally,LGRBF and PGRBF interpolation methods are used to compute invariant vertical deformation parameters,i.e.,changes in Gaussian and mean Curvatures in the Groningen area in the North of Netherlands.展开更多
The aim of this work is to study the Berezin quantization of a Gaussian state. The result is another Gaussian state that depends on a quantum parameter α, which describes the relationship between the classical and qu...The aim of this work is to study the Berezin quantization of a Gaussian state. The result is another Gaussian state that depends on a quantum parameter α, which describes the relationship between the classical and quantum vision. The compression parameter λ>0 is associated to the harmonic oscillator semigroup.展开更多
The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" ...The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" alt="" /><img src="Edit_bdd10470-9b63-4b2d-9cec-636969547ca5.png" width="90" height="22" alt="" /><span style="white-space:normal;">and <img src="Edit_e9cd6876-e2b8-45cf-ba17-391f054679b4.png" width="90" height="21" alt="" /></span>where <span style="white-space:nowrap;"><em>α</em>,<span style="white-space:nowrap;"><em>η</em></span><em></em></span> and <span style="white-space:nowrap;"><em>β</em></span> are real or complex constants are evaluated in terms of the confluent hypergeometric function <sub>1</sub><em>F</em><sub>1</sub> and the hypergeometric function <sub>1</sub><em>F</em><sub>2</sub>. The hyperbolic and Euler identities are used to derive some identities involving exponential, hyperbolic, trigonometric functions and the hypergeometric functions <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">1</sub> and <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">2</sub>. Having evaluated, these non-elementary integrals, some new probability measures generalizing the gamma-type and Gaussian distributions are also obtained. The obtained generalized probability distributions may, for example, allow to perform better statistical tests than those already known (e.g. chi-square (<span style="white-space:nowrap;"><em>x</em><sup>2</sup></span>) statistical tests and other statistical tests constructed based on the central limit theorem (CLT)), while avoiding the use of computational approximations (or methods) which are in general expensive and associated with numerical errors.展开更多
In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the ...In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.展开更多
The possibility of using finite atomic functions of Kravchenko-Rvachev for description of the laws of distribution of the refractive index of the troposphere,the intensity of the scattering from the sea,seasonal behav...The possibility of using finite atomic functions of Kravchenko-Rvachev for description of the laws of distribution of the refractive index of the troposphere,the intensity of the scattering from the sea,seasonal behavior unit radar cross section(RCS)of land areas with vegetation covering,as well as the spectrum of electromagnetic spikes of lithospheric origin is considered.展开更多
Based on the integral representation of the Bessel functions and the generating function of the Tricomi function, an analytical expression of the Wigner distribution function (WDF) for a coherent or partially cohere...Based on the integral representation of the Bessel functions and the generating function of the Tricomi function, an analytical expression of the Wigner distribution function (WDF) for a coherent or partially coherent Bessel Gaussian beam is presented. The reduced two-dimensional WDFs are also demonstrated graphically, which reveals the dependence of the reduced WDFs on the beam parameters.展开更多
A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner functio...A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.展开更多
基金supported by Shanghai 2021“Science and Technology Innovation Action Plan”:Social Development Science and Technology Research Project(Grant No.21DZ1202703).
文摘The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model.
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
基金supported by the National Natural Science Foundation of China(Nos.12272211 and 12072181).
文摘Fluid-conveying pipes generally face combined excitations caused by periodic loads and random noises.Gaussian white noise is a common random noise excitation.This study investigates the random vibration response of a simply-supported pipe conveying fluid under combined harmonic and Gaussian white noise excitations.According to the generalized Hamilton’s principle,the dynamic model of the pipe conveying fluid under combined harmonic and Gaussian white noise excitations is established.Subsequently,the averaged stochastic differential equations and Fokker–Planck–Kolmogorov(FPK)equations of the pipe conveying fluid subjected to combined excitations are acquired by the modified stochastic averaging method.The effectiveness of the analysis results is verified through the Monte Carlo method.The effects of fluid speed,noise intensity,amplitude of harmonic excitation,and damping factor on the probability density functions of amplitude,displacement,as well as velocity are discussed in detail.The results show that with an increase in fluid speed or noise intensity,the possible greatest amplitude for the fluid-conveying pipe increases,and the possible greatest displacement and velocity also increase.With an increase in the amplitude of harmonic excitation or damping factor,the possible greatest amplitude for the pipe decreases,and the possible greatest displacement and velocity also decrease.
基金Supported by the National Natural Science Foundation of China(71273264)the Fundamental Research Funds for the Central Welfare Scientific Research Institutes of China(2015-14)~~
文摘In view of the difficulty in determining remaining useful life of plant new variety right in economic analysis, Weibull Survival Analysis Method and Gaussian Model to were used to study how to accurately estimate the remaining useful life of plant new variety right. The results showed that the average life of the granted rice varieties was 10.013 years. With the increase of the age of plant variety rights, the probability of the same residual life Ttreaching x was smaller and smaller, the reliability lower and lower, while the probability of the variety rights becoming invalid became greater. The remaining useful life of a specific granted rice variety was closely related to the demonstration promotion age when the granted rice variety reached its maximum area and the appearance of alternative varieties, and when the demonstration promotion age of the granted rice variety reaching the one with the maximum area, the promotion area would be decreased once a new alternative variety appeared, correspondingly with the shortening of the remaining useful life of the variety. Therefore, Weibull Survival Analysis Method and Gaussian Model could describe the remaining useful life's time trend, as well as determine the remaining useful life of a concrete plant variety right, clarify the entire life time of varieties rights, and make the economic analysis of plant new varieties rights more accurate and reasonable.
文摘The relations between Gaussian function and Γ function is revealed first at one dimensional situation. Then, the Fourier transformation of n dimensional Gaussian function is deduced by a lemma. Following the train of thought in one dimensional situation, the relation between n dimensional Gaussian function and Γ function is given. By these, the possibility of arbitrary derivative of an n dimensional Gaussian function being a mother wavelet is indicated. The result will take some enlightening role in exploring the internal relations between Gaussian function and Γ function as well as in finding high dimensional mother wavelets.
基金supported by the National Natural Science Foundation of China(Grant Nos.61162014,61210306074)the Natural Science Foundation of Jiangxi Province of China(Grant No.20122BAB201025)the Foundation for Young Scientists of Jiangxi Province(Jinggang Star)(Grant No.20122BCB23002)
文摘Most existing algorithms for the underdetermined blind source separation(UBSS) problem are two-stage algorithm, i.e., mixing parameters estimation and sources estimation. In the mixing parameters estimation, the previously proposed traditional clustering algorithms are sensitive to the initializations of the mixing parameters. To reduce the sensitiveness to the initialization, we propose a new algorithm for the UBSS problem based on anechoic speech mixtures by employing the visual information, i.e., the interaural time difference(ITD) and the interaural level difference(ILD), as the initializations of the mixing parameters. In our algorithm, the video signals are utilized to estimate the distances between microphones and sources, and then the estimations of the ITD and ILD can be obtained. With the sparsity assumption in the time-frequency domain, the Gaussian potential function algorithm is utilized to estimate the mixing parameters by using the ITDs and ILDs as the initializations of the mixing parameters. And the time-frequency masking is used to recover the sources by evaluating the various ITDs and ILDs. Experimental results demonstrate the competitive performance of the proposed algorithm compared with the baseline algorithms.
文摘In recent years, the use of Fuzzy set theory has been popularised for handling overlap domains in control engineering but this has mostly been within the context of triangular membership functions. In actual practice however, such domains are hardly triangular and in fact for most engineering applications the membership functions are usually Gaussian and sometimes cosine. In an earlier paper, we derived explicit Fourier series expressions for systematic and dynamic computation of grade of membership in the overlap and non-overlap regions of triangular Fuzzy sets. In another paper, we extended the methodology to cover cases of cosine, exponential and Gaussian Fuzzy sets by presenting explicit Fourier series representation for encoding fuzziness in the overlap and non-overlap domains of Fuzzy sets. This current paper presents the development of a “Fuzzy Controller” device, which incorporates the formal mathematical representation for computing grade of membership of Gaussian and triangular Fuzzy sets. It is shown that triangular approximation of Gaussian membership function in Fuzzy control can lead to wrong linguistic classification which may have adverse effects on operational and control decisions. The development of the Fuzzy controller demonstrates that the proposed technique can indeed be incorporated in engineering systems for dynamic and systematic computation of grade of membership in the overlap and non-overlap regions of Fuzzy sets;and thus provides a basis for the design of embedded Fuzzy controller for mission critical applications.
基金Supported by National Natural Science Foundation of China(41204133)Scientific Reserch Fund of Sichuan Provincial Education Department(13ZA0066)Cultivating programme of excellent innovation team of Chengdu University of technology(KYTD201301)
文摘Based on the statistical characteristics of energy spectrum and the features of spectrum-shifting in spectrometry,the parameter adjustment method of Gaussian function space was applied in the simulation of spectrum-shifting.The transient characteristics of energy spectrum were described by the Gaussian function space,and then the Gaussian function space was transferred by parameter adjustment method.Furthermore,the spectrum-shifting in measurement of energy spectrum was simulated.The applied example shows that the parameters can be adjusted flexibly by this method to meet the various requirements in simulation of energy spectrum-shifting.This method was one parameterized simulation method with good performance for the practical application.
基金supported by U.S. National Science Foundation EAR06-35611U.S. Air Force contract FA8718-08-C-002the members of the Geo-Mathematical Imaging Group (GMIG) at Purdue University
文摘This study investigates seismic interferometry in which the Green's function is estimated between two receiv- ers by cross-correlation and integration over sources. For smoothly varying source strengths, the dominant contributions of the correlation integral come from the stationary phase directions in the forward and backward directions from the alignment of the two receivers. Gaussian beams can be used to evaluate the correlation integral and concentrate the amplitudes in a vicinity of the stationary phase regions instead of completely relying on phase interference. Several numerical examples are shown to illustrate how this process works. The use of Gaussian beams for the evaluation of the correlation integral results in stable estimates, and also provides physical insight into the estimation of the Green's function based on seismic interferometry.
基金Supported in part by the National Natural Science Foundation of China.
文摘The wavefunctions with a simple Gaussian form for the α-particle in the light nuclei have been used in some literatures.This note shows that this type of the α-particle wavefunction can not fit the experimental data for electron scattering.
基金supported by National Social Science Foundation of China(21BTJ068)。
文摘In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test statistic for the fixed effect is constructed.Secondly,using the Bootstrap approach and generalized approach,the one-sided hypothesis testing and interval estimation problems for the single variance component,the sum and ratio of variance components are discussed respectively.Further,the Monte Carlo simulation results indicate that the exact test statistic performs well in the one-sided hypothesis testing problem for the fixed effect.And the Bootstrap approach is better than the generalized approach in the one-sided hypothesis testing problems for variance component functions in most cases.Finally,the above approaches are applied to the real data examples of the consumer price index and value-added index of three industries to verify their rationality and effectiveness.
文摘In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation of the scattered data in the vertical deformation analysis.For the optimal selection of the shape parameter,which is crucial in the GRBF interpolation,two methods are used:the Power Gaussian Radial Basis Functions(PGRBF)and Leave One Out Cross Validation(LOOCV)(LGRBF).We compared the PGRBF and LGRBF to the traditional interpolation methods such as the Finite Element Method(FEM),polynomials,Moving Least Squares(MLS),and the usual GRBF in both the simulated and actual Interferometric Synthetic Aperture Radar(InSAR)data.The estimated results showed that the surface interpolation accuracy was greatly improved by LGRBF and PGRBF methods in comparison withFEM,polynomial,and MLS methods.Finally,LGRBF and PGRBF interpolation methods are used to compute invariant vertical deformation parameters,i.e.,changes in Gaussian and mean Curvatures in the Groningen area in the North of Netherlands.
文摘The aim of this work is to study the Berezin quantization of a Gaussian state. The result is another Gaussian state that depends on a quantum parameter α, which describes the relationship between the classical and quantum vision. The compression parameter λ>0 is associated to the harmonic oscillator semigroup.
文摘The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" alt="" /><img src="Edit_bdd10470-9b63-4b2d-9cec-636969547ca5.png" width="90" height="22" alt="" /><span style="white-space:normal;">and <img src="Edit_e9cd6876-e2b8-45cf-ba17-391f054679b4.png" width="90" height="21" alt="" /></span>where <span style="white-space:nowrap;"><em>α</em>,<span style="white-space:nowrap;"><em>η</em></span><em></em></span> and <span style="white-space:nowrap;"><em>β</em></span> are real or complex constants are evaluated in terms of the confluent hypergeometric function <sub>1</sub><em>F</em><sub>1</sub> and the hypergeometric function <sub>1</sub><em>F</em><sub>2</sub>. The hyperbolic and Euler identities are used to derive some identities involving exponential, hyperbolic, trigonometric functions and the hypergeometric functions <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">1</sub> and <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">2</sub>. Having evaluated, these non-elementary integrals, some new probability measures generalizing the gamma-type and Gaussian distributions are also obtained. The obtained generalized probability distributions may, for example, allow to perform better statistical tests than those already known (e.g. chi-square (<span style="white-space:nowrap;"><em>x</em><sup>2</sup></span>) statistical tests and other statistical tests constructed based on the central limit theorem (CLT)), while avoiding the use of computational approximations (or methods) which are in general expensive and associated with numerical errors.
基金Natural Science Foundation of Shanghai,China(No.19ZR1402300)。
文摘In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.
文摘The possibility of using finite atomic functions of Kravchenko-Rvachev for description of the laws of distribution of the refractive index of the troposphere,the intensity of the scattering from the sea,seasonal behavior unit radar cross section(RCS)of land areas with vegetation covering,as well as the spectrum of electromagnetic spikes of lithospheric origin is considered.
文摘Based on the integral representation of the Bessel functions and the generating function of the Tricomi function, an analytical expression of the Wigner distribution function (WDF) for a coherent or partially coherent Bessel Gaussian beam is presented. The reduced two-dimensional WDFs are also demonstrated graphically, which reveals the dependence of the reduced WDFs on the beam parameters.
文摘A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.