期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Balanced Representation Learning for Long-tailed Skeleton-based Action Recognition
1
作者 Hongda Liu Yunlong Wang +4 位作者 Min Ren Junxing Hu Zhengquan Luo Guangqi Hou Zhenan Sun 《Machine Intelligence Research》 2025年第3期466-483,共18页
Skeleton-based action recognition has recently made significant progress.However,data imbalance is still a great challenge in real-world scenarios.The performance of current action recognition algorithms declines shar... Skeleton-based action recognition has recently made significant progress.However,data imbalance is still a great challenge in real-world scenarios.The performance of current action recognition algorithms declines sharply when training data suffers from heavy class imbalance.The imbalanced data actually degrades the representations learned by these methods and becomes the bottleneck for action recognition.How to learn unbiased representations from imbalanced action data is the key to long-tailed action recognition.In this paper,we propose a novel balanced representation learning method to address the long-tailed problem in action recognition.Firstly,a spatial-temporal action exploration strategy is presented to expand the sample space effectively,generating more valuable samples in a rebalanced manner.Secondly,we design a detached action-aware learning schedule to further mitigate the bias in the representation space.The schedule detaches the representation learning of tail classes from training and proposes an action-aware loss to impose more effective constraints.Additionally,a skip-type representation is proposed to provide complementary structural information.The proposed method is validated on four skeleton datasets,NTU RGB+D 60,NTU RGB+D 120,NW-UCLA and Kinetics.It not only achieves consistently large improvement compared to the state-of-the-art(SOTA)methods,but also demonstrates a superior generalization capacity through extensive experiments.Our code is available at https://github.com/firework8/BRL. 展开更多
关键词 Action recognition skeleton sequence long-tailed visual recognition imbalance learning.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部