Skeleton-based action recognition has recently made significant progress.However,data imbalance is still a great challenge in real-world scenarios.The performance of current action recognition algorithms declines shar...Skeleton-based action recognition has recently made significant progress.However,data imbalance is still a great challenge in real-world scenarios.The performance of current action recognition algorithms declines sharply when training data suffers from heavy class imbalance.The imbalanced data actually degrades the representations learned by these methods and becomes the bottleneck for action recognition.How to learn unbiased representations from imbalanced action data is the key to long-tailed action recognition.In this paper,we propose a novel balanced representation learning method to address the long-tailed problem in action recognition.Firstly,a spatial-temporal action exploration strategy is presented to expand the sample space effectively,generating more valuable samples in a rebalanced manner.Secondly,we design a detached action-aware learning schedule to further mitigate the bias in the representation space.The schedule detaches the representation learning of tail classes from training and proposes an action-aware loss to impose more effective constraints.Additionally,a skip-type representation is proposed to provide complementary structural information.The proposed method is validated on four skeleton datasets,NTU RGB+D 60,NTU RGB+D 120,NW-UCLA and Kinetics.It not only achieves consistently large improvement compared to the state-of-the-art(SOTA)methods,but also demonstrates a superior generalization capacity through extensive experiments.Our code is available at https://github.com/firework8/BRL.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62276263,62006225 and 62071468)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS),China(No.XDA27040700)the National Key Research and Development Program of China(No.2022YFC3310400).
文摘Skeleton-based action recognition has recently made significant progress.However,data imbalance is still a great challenge in real-world scenarios.The performance of current action recognition algorithms declines sharply when training data suffers from heavy class imbalance.The imbalanced data actually degrades the representations learned by these methods and becomes the bottleneck for action recognition.How to learn unbiased representations from imbalanced action data is the key to long-tailed action recognition.In this paper,we propose a novel balanced representation learning method to address the long-tailed problem in action recognition.Firstly,a spatial-temporal action exploration strategy is presented to expand the sample space effectively,generating more valuable samples in a rebalanced manner.Secondly,we design a detached action-aware learning schedule to further mitigate the bias in the representation space.The schedule detaches the representation learning of tail classes from training and proposes an action-aware loss to impose more effective constraints.Additionally,a skip-type representation is proposed to provide complementary structural information.The proposed method is validated on four skeleton datasets,NTU RGB+D 60,NTU RGB+D 120,NW-UCLA and Kinetics.It not only achieves consistently large improvement compared to the state-of-the-art(SOTA)methods,but also demonstrates a superior generalization capacity through extensive experiments.Our code is available at https://github.com/firework8/BRL.