The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
To explore air contamination resulting from special biomass combustion and suspended dust in Lhasa,the present study focused on the size distribution and chemical characteristics of particulate matter(PM)emission resu...To explore air contamination resulting from special biomass combustion and suspended dust in Lhasa,the present study focused on the size distribution and chemical characteristics of particulate matter(PM)emission resulting from 7 types of non-fossil pollution sources.We investigated the concentration and size distribution of trace elements from 7 pollution sources collected in Lhasa.Combining Lhasa’s atmospheric particulate matter data,enrichment factors(EFs)have been calculated to examine the potential impact of those pollution sources on the atmosphere quality of Lhasa.The highest mass concentration of total elements of biomass combustion appeared at PM_(0.4),and the second highest concentration existed in the size fraction 0.4-1μm;the higher proportion(12%)of toxicmetals was produced by biomass combustion.The elemental composition of suspended dust and atmospheric particulate matter was close(except for As and Cd);the highest concentration of elements was all noted in PM_(2.5-10)(PM_(3-10)).Potassium was found to be one of the main biomass markers.The proportion of Cu in suspended dust is significantly lower than that of atmospheric particulate matter(0.53%and 3.75%),which indicates that there are other anthropogenic sources.The EFs analysis showed that the Cr,Cu,Zn,and Pb produced by biomass combustion were highly enriched(EFs>100)in all particle sizes.The EFs of most trace elements increased with decreasing particle size,indicating the greater influence of humanfactors on smaller particles.展开更多
The characteristics of summertime raindrop size distribution(DSD) and associated relations in the semi-arid region over the Inner Mongolian Plateau(IMP) were investigated,utilizing five-year continuous observations by...The characteristics of summertime raindrop size distribution(DSD) and associated relations in the semi-arid region over the Inner Mongolian Plateau(IMP) were investigated,utilizing five-year continuous observations by a PARSIVEL2disdrometer in East Ujimqin County(EUC),China.It is found that only 7.94% of the 15 664 one-min precipitation samples meet classification criteria as convective rain(CR),but its contribution to the total rainfall amount is 63.87%.Notably,40.72% of the rainfall comes from large-sized raindrops(D> 3 mm),despite the fact that large-sized raindrops account for only 1.73% of the CR total number concentration.Further results show that the mean value of mass-weighted mean diameters(Dm) is larger(2.43 mm) and generalized intercepts(lgN_(W)) is lower(3.19) in CR,aligning with a "continentallike" cluster,which is mainly influenced by the joint impact of in-cloud ice-based processes and the below-cloud environmental background.Also,the empirical relationships of shape-slope(μ-Λ),radar reflectivity-rain rate(Z-R),and rainfall kinetic energy(KE_(time)-Rand KE_(time)-Z) are localized.To quantitatively analyze the impact of DSD parameters on kinetic energy estimation,power-law KE_(time)-R and KE_(time)-Z relationships are derived based on the normalized gamma distribution.N_(W)takes precedence over μ in affecting variabilities of multiplicative coefficients,especially for KE_(time)-R relationship where the multiplicative coefficient is proportional to N_(W)^(-0.287).It should be noted that although the proportion of CR occurring throughout the summer is small,raindrops with lower N_(W) and larger Dmwill generate higher KE_(time),which will bring a higher potential risk of soil erosion in semi-arid regions over IMP.展开更多
Developing the railway transport sector is a challenging scientific,economic and social research topic starting with ensuring human security.The main topic that should be developed in that sense is the ballast stabili...Developing the railway transport sector is a challenging scientific,economic and social research topic starting with ensuring human security.The main topic that should be developed in that sense is the ballast stability and dynamical behaviour under external loading and environmental changes.This paper investigates the effect of particle size distribution and normal pressure on the mechanical response of a ballast bed.Grading curves of ballast layers with different sizes are illustrated to discuss their strength behaviour under various strains to deduce the significant effect on the direct shear performance of the ballast layer.Direct shear tests with different Particle Size Distribution(PSD)were reproduced using the Discrete Element Method(DEM).It is noticed that when the number of small-sized ballast increases,the shear strength and the friction angle increase to varying degrees under different normal pressures,with an average increase of 27%and 8%,respectively.When the number of large-sized ballast decreases,the shear strength and the friction angle decrease to varying degrees under different normal pressures,with an average decrease of 6%and 3%,respectively.展开更多
The raindrop size distribution(DSD) is a significant characteristic of precipitation physics,which plays a crucial role in improving the accuracy of radar quantitative precipitation estimation and prediction.There is ...The raindrop size distribution(DSD) is a significant characteristic of precipitation physics,which plays a crucial role in improving the accuracy of radar quantitative precipitation estimation and prediction.There is an effect of atmospheric circulation and weather sy stems in South China,with frequent precipitation and differences in regional features,resulting in a limited understanding of the DSD characteristics and their impact mechanisms in the region. In this study,six ground-based two-dimensional video di sdrometers(2DVDs) were used to analyze the DSD of inland and coastal in South China during the five-year(2016-2020) monsoon seasons(April to September),ERA5 reanalysis data and MODIS cloud property products were also used to investigate the dynamics and microphysical characteristics of monsoon precipitation.Compared to inland rainfall,coastal rainfall has a higher conentration of small,medium,and diameter of less than 4.7 mm large raindrops.Considering the contributions to precipitation,the inland and coastal rainfall are dominated by convective rain,accounting for 74.8% and 84.7% of the total rainfall,respectively.The coastal rainfall has a higher the mass-weiglited mean diameter(D_(m)) value than the inland rainfall D_(m) for both the stratiform and convective rainfall.The logarithmic mean of the generalized intercept parameter(log_(10)N_(w)) in inland stratiform rain is greater than that in coastal areas,while convective rain is relatively small.Due to the impact of precipitation types and climate conditions,The Z-R relationship between inland and coastal rainfall also shows obvious differences.Compared to inland areas,there is more frequent convective activity,relatively moist near-surface conditions,and lower cloud droplet number concentrations,which contribute to larger D_(m) of raindrops in coastal areas.This study deepens the understanding of changes in South China's coastal and inland DSD and provides support for improving numerical weather forecasting in the region.展开更多
Accurate simulation of ice accretion of supercooled large droplet(SLD)is pivotal for the international airworthiness certification of large aircraft.Its complex dynamics behavior and broad particle size distributions ...Accurate simulation of ice accretion of supercooled large droplet(SLD)is pivotal for the international airworthiness certification of large aircraft.Its complex dynamics behavior and broad particle size distributions pose significant challenges to reliable CFD predictions.A numerical model of multi-particle SLD coupling breaking,bouncing and splashing behaviors is established to explore the relationship between dynamics behavior and particle size.The results show that the peak value of droplet collection efficiencyβdecreases due to splashing.The bounce phenomenon will make the impact limit S_(m)of the water drops decrease.With the increase of the SLD particle size,the water drop bounce point gradually moves toward the trailing edge of the wing.The critical breaking diameter of SLD at an airflow velocity of 50 m/s is approximately 100μm.When the SLD particle size increases,the height of the water droplet shelter zone on the upper edge of the wing gradually decreases,and the velocity in the Y direction decreases first and then increases in the opposite direction,increasing the probability of SLD hitting the wing again.Large particle droplets have a higher effect on the impact limit S_(m)than smaller droplets.Therefore,in the numerical simulation of the SLD operating conditions,it is very important to ensure the proportion of large particle size water droplets.展开更多
The investigation of whether sediment samples contain representative grain size distribution information is important for the accurate extraction of sediment characteristics and conduct of related sedimentary record s...The investigation of whether sediment samples contain representative grain size distribution information is important for the accurate extraction of sediment characteristics and conduct of related sedimentary record studies.This study comparatively analyzed the numerical and qualitative differences and the degree of correlation of 36 sets of the characteristic parameters of surface sediment parallel sample grain size distribution from three sampling profiles at Jinsha Bay Beach in Zhanjiang,western Guangdong.At each sampling point,five parallel subsamples were established at intervals of 0,10,20,50,and 100 cm along the coastline.The research findings indicate the following:1)relatively large differences in the mean values of the different parallel samples(0.19–0.34Φ),with smaller differences observed in other characteristic grain sizes(D_(10),D_(50),and D_(90));2)small differences in characteristic values among various parallel sample grain size parameters,with at least 33%of the combinations of qualitative results showing inconsistency;3)50%of the regression equations between the skewness of different parallel samples displaying no significant correlation;4)relative deviations of−47.91%to 27.63%and−49.20%to 2.08%existing between the particle size parameters of a single sample and parallel samples(with the average obtained)at intervals of 10 and 50 cm,respectively.As such,small spatial differences,even within 100 cm,can considerably affect grain size parameters.Given the uncertain reasons underlying the representativeness of the samples,which may only cover the area immediately surrounding the sampling station,researchers are advised to design parallel sample collection strategies based on the spatiotemporal distribution characteristics of the parameters of interest during sediment sample collection.This study provides a typical case of the comparative analysis of parallel sample grain size parameters,with a focus on small spatial beach sediment,which contributes to the enhanced understanding of the accuracy and reliability of sediment sample collection strategies and extraction of grain size information.展开更多
A double-moment cloud microphysics scheme requires an assumption for cloud droplet size distributions(DSDs).However,since observations of cloud DSDs are limited,default values for shape parameters and cloud condensati...A double-moment cloud microphysics scheme requires an assumption for cloud droplet size distributions(DSDs).However,since observations of cloud DSDs are limited,default values for shape parameters and cloud condensation nuclei activation parameters are often used in numerical simulations.In this study,the effects of cloud DSDs on numerical simulations of warm stratiform precipitation around Tokyo are investigated using the Japan Meteorological Agency's non-hydrostatic model,which incorporates a double-moment cloud microphysics scheme.Simulations using the default cloud DSD showed higher cloud droplet number concentrations and lower radar reflectivity than observed data,suggesting that the default cloud DSD is too narrow.Simulations with a cloud DSD based on in situ cloud observations corrected these errors.In addition,observation-based cloud DSDs affected rainfall amounts through the autoconversion rate of cloud water and improved the threat scores.These results suggest that realistic cloud DSDs should be provided for double-moment cloud microphysics schemes in scientific studies.展开更多
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
The determination of bubble size distribution is a prerequisite for the study of gas-liquid two-phase flow characteristics in electrolytic cells.Here the departure diameter of hydrogen bubbles and oxygen bubbles and t...The determination of bubble size distribution is a prerequisite for the study of gas-liquid two-phase flow characteristics in electrolytic cells.Here the departure diameter of hydrogen bubbles and oxygen bubbles and their detachment process from a nickel wire electrode during water electrolysis are studied using high-speed photography.The results show that in industrial alkaline environment,the departure diameters of most hydrogen bubbles and oxygen bubbles are generally smaller than 60μm and 250μm with the current density ranges from 0.15 to 0.35A/cm^(2).The adhesion force of hydrogen bubbles on a nickel wire is found to be so weak that they can separate with a tiny size.The diameters of oxygen bubbles conform to normal distribution,and its distribution range widens with the increase of current density.The theoretical analysis show that the comprehensive conversion rate of current-to-bubble is unexpectedly low especially at low current densities,which may be attributed to the loss of gas components caused by bubble detachment mode.The majority of oxygen bubbles detach by a sudden bounce after coalescence,which may bring strong disturbance to the concentration boundary layer.This also indicates the coalescence-induced bubble departure mode may occupy a dominant position in the electrolyzers.展开更多
Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The str...Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2).展开更多
Water-soluble inorganic ions(WSIIs)play a pivotal role in atmospheric chemical reactions,particularly influencing the formation of secondary particulate matter.A comprehensive grasp of the vertical distribution of atm...Water-soluble inorganic ions(WSIIs)play a pivotal role in atmospheric chemical reactions,particularly influencing the formation of secondary particulate matter.A comprehensive grasp of the vertical distribution of atmospheric pollutants holds immense significance in understanding the diffusion and transportation of these pollutants.This study investigates the WSIIs of PM_(2.5)and size-segregated particles at the top(~2060 m a.s.l.)and foot of Mt.Hua during the winter of 2020.All the measured ions present significant higher concentrations(1.9~6.9 times)at the foot than the top.Cl^(-)and K^(+)at the foot are more than 4 times of those at the top,whereas Ca^(2+)and Mg^(2+)are only 1.3-1.9 times higher.The particle size distribution of NO_(3)^(-),SO_(4)^(2-),K^(+)and Cl^(-)demonstrate a single peak distribution(0.7-1.1μm)at the foot,but with a bimodal distribution(0.7-1.1μm and 4.7-5.8μm)at the top.These differences suggest that the aerosol at the alpine region is mainly transported via long-distance from Northwest/North China,but limited influenced by vertical transport through valley breeze.The changes of concentration and size distribution of WSIIs in dust event and non-dust period indicate that the effects of dust event on aerosols at ground surface were weaker than that of the free troposphere of Guanzhong Plain.Notably,our study underscores the dominant influence of NO_(3)^(-)in shaping the gas-particle distribution of ammonia within the winter free troposphere.Our results highlight the significant role of long-range transport on aerosols in the free troposphere in Guanzhong Plain,Northwest China.展开更多
Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties....Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.展开更多
The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption mode...The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption model,but this does not eliminate the deviation between experiments and simulations caused by particle size distribution in practice.In this study,the population balance equation(PBE)and fixed-bed adsorption kinetics model were combined to simulate the adsorption process in a fixed-bed reactor,modeling the distribution of adsorbate uptake over time on adsorbent particles of different sizes.We integrated and optimized the PBE and fixed-bed mass transfer model in the algorithm,and the resulting combined model adopts a variable time step size,which can achieve a balance between computational efficiency and error while ensuring computational convergence.By slicing the model in the spatial dimension,multiple sets of PBE can be calculated in parallel,improving computational efficiency.The adsorption process of single-component and multi-component CO_(2)/CH_(4)/N_(2)on 4A zeolite without binder was simulated,and the influence of adsorbent particle size distribution was analyzed.Simulation results show that the assumption of average adsorbent particle size,which was commonly made in published work,will underestimate the time required for adsorbates to break through the fixed bed compared with the assumption of uniform adsorbent particle size.This model helps to consider the impact of adsorbent particle size distribution on the adsorption process,thereby improving the prediction accuracy of adsorbent performance.展开更多
A kinetic 5-vertex model is used to investigate hexagon-islands formation on growing single-walled carbon nanotubes (SWCNT). In the model, carbon atoms adsorption and migration processes on the SWCNT edge are consider...A kinetic 5-vertex model is used to investigate hexagon-islands formation on growing single-walled carbon nanotubes (SWCNT). In the model, carbon atoms adsorption and migration processes on the SWCNT edge are considered. These two dynamic processes are assumed to be mutually independent as well as mutually dependent as far as the whole growth of the nanotube is concerned. Key physical parameters of the model are the growth time t, the diffusion length Γ defined as the ratio of the diffusion rate D to the carbon atomic flux F and the SWCNT chiral angle. The kinetic equation that describes the nanotube edge dynamics is solved using kinetic Monte Carlo simulations with the Bortz, Kalos and Lebowitz update algorithm. The behaviors of islands density and size distribution are investigated within the growth parameters’ space. Our study revealed key mechanisms that enable the formation of a new ring of hexagons at the SWCNT edge. The growth occurs either by pre-existing steps propagation or by hexagon-islands growth and coalescence on terraces located between dislocation steps, depending on values of model parameters. This should offer a road map for edge design in nanotubes production. We also found that in appropriate growth conditions, the islands density follows Gaussian and generalized Wigner distributions whereas their size distribution at a given growth time shows a decreasing exponential trend.展开更多
Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose ...Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.展开更多
Size distribution characteristics of intercity bus hubs in China from 1997 to 2(104 were analyzed regarding highway passenger volume as a size index of intercity bus hubs. Yearly fractal dimensions of intercity bus h...Size distribution characteristics of intercity bus hubs in China from 1997 to 2(104 were analyzed regarding highway passenger volume as a size index of intercity bus hubs. Yearly fractal dimensions of intercity bus hub sizes were exactly calculated by a novel model. Fractal dimensions of the 200 biggest intercity bus hubs from 2000 to 2004 were 1. 486 2 to 1. 511 8, and that is consistent with fractal dimensions of Chinese urban system sizes. It showed that the size distribution of intercity bus hubs had fractal structure. Fractal dimensions from 1997 to 2004 indicated that intercity bus hub size distribution grew from bi-fractal to single fractal. It is concluded that the intercity bus hub system is in evolutionary progress, and the Central Government should support large intercity bus hubs more to optimize system structure.展开更多
The aerosol number concentration and size distribution were measured with the newly developed Wide-range Particle Spectrometer in summer and winter of 2006 at the urban site of Jinan City. Here reported the characteri...The aerosol number concentration and size distribution were measured with the newly developed Wide-range Particle Spectrometer in summer and winter of 2006 at the urban site of Jinan City. Here reported the characteristics of fine particles of the different observation seasons. Relative high number concentrations for the particles in the diameter range of 10-500 nm were observed in both seasons. It was found that the dominant number distributed in particle diameter smaller than 100 nm and the percentage over the number concentration of all air particles is much higher than what has been measured in other urban sites over the world. The number mean diameter in summer was much smaller than in winter, strongly suggesting the different origin of ultrafine particles in different seasons. That is, particles in ultrafine mode mainly came from nucleation and new particle formation in summer while from traffic emission in winter. The diurnal variation also supported this point. Number concentration in the diameter range of 10-200 um got their peak values at noontime, well correlated with the mixing ratio of SO2 and the intensity of solar radiation in summer. While in winter, those in the same diameter range showed the main peaks during the traffic hours happened in the morning and evening.展开更多
Particles of dust washed off streets by stormwater are an important pathway of polyaromatic hydrocarbons (PAHs) into urban streams. This article presented a comprehensive assessment of the size distribution of PAHs ...Particles of dust washed off streets by stormwater are an important pathway of polyaromatic hydrocarbons (PAHs) into urban streams. This article presented a comprehensive assessment of the size distribution of PAHs in street dust particles, the potential risks of the particles in urban streams, and the sources and sinks of PAHs in the stream network. This assessment was based on measurements of 16 PAHs from the USEPA priority list in street dust particles and river sediments in Xincheng, China. The content of total PAHs ranged from 1629 to 8986 Dg/kg in street dust particles, where smaller particles have a higher concentrations. Approximately 55% of the total PAHs were associated with particles less than 250 μm which accounted for 40% of the total mass of street dust. The PAH quantities increased from 2.41 to 46.86 μg/m2 in the sequence of new residential, rising through main roads, old town residential, commercial and industrial areas. The sediments in stream reaches in town were found to be sinks for street dust particle PAHs. The research findings suggested that particle size, land use and the hydrological conditions in the stream network were the factors which most influenced the total loads of PAH in the receiving water bodies.展开更多
Microphysical characteristics of the raindrop size distribution(RSD)in Typhoon Morakot(2009) have been studied through the PARSIVEL disdrometer measurements at one site in Fujian province,China during the passage of t...Microphysical characteristics of the raindrop size distribution(RSD)in Typhoon Morakot(2009) have been studied through the PARSIVEL disdrometer measurements at one site in Fujian province,China during the passage of the storm from 7 to 10 August 2009.The time evolution of the RSD reveals different segments of the storm.Significant difference was observed in the microphysical characteristics between the outer rainband and the eyewall;the eyewall precipitation had a broader size distribution(a smaller slope) than the outer rainband and eye region.The outer rainband and the eye region produced stratiform rains while the eyewall precipitation was convective or mixed stratiform-convective.The RSD was typically characterized by a single peak distribution and well represented by the gamma distribution.The relations between the shape(μ)and slope(Λ)of the gamma distribution and between the reflectivity(Z)and rainfall rate(R)have been investigated.Based on the NW-Dm relationships,we suggest that the stratiform rain for the outer rainband and the eye region was formed by the melting of graupel or rimed ice particles,which likely originated from the eyewall clouds.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
基金supported by the Natural Science Foundation of China (No.11775180).
文摘To explore air contamination resulting from special biomass combustion and suspended dust in Lhasa,the present study focused on the size distribution and chemical characteristics of particulate matter(PM)emission resulting from 7 types of non-fossil pollution sources.We investigated the concentration and size distribution of trace elements from 7 pollution sources collected in Lhasa.Combining Lhasa’s atmospheric particulate matter data,enrichment factors(EFs)have been calculated to examine the potential impact of those pollution sources on the atmosphere quality of Lhasa.The highest mass concentration of total elements of biomass combustion appeared at PM_(0.4),and the second highest concentration existed in the size fraction 0.4-1μm;the higher proportion(12%)of toxicmetals was produced by biomass combustion.The elemental composition of suspended dust and atmospheric particulate matter was close(except for As and Cd);the highest concentration of elements was all noted in PM_(2.5-10)(PM_(3-10)).Potassium was found to be one of the main biomass markers.The proportion of Cu in suspended dust is significantly lower than that of atmospheric particulate matter(0.53%and 3.75%),which indicates that there are other anthropogenic sources.The EFs analysis showed that the Cr,Cu,Zn,and Pb produced by biomass combustion were highly enriched(EFs>100)in all particle sizes.The EFs of most trace elements increased with decreasing particle size,indicating the greater influence of humanfactors on smaller particles.
基金supported by the National Natural Science Foundation of China(Grant Nos.42325503,42075063,42075066,and 42021004)the Hubei Provincial Natural Science Foundation and the Meteorological Innovation and Development Project of China(Grant No.2023AFD096)the Beijige Foundation of NJIAS(Grant No.BJG202304).
文摘The characteristics of summertime raindrop size distribution(DSD) and associated relations in the semi-arid region over the Inner Mongolian Plateau(IMP) were investigated,utilizing five-year continuous observations by a PARSIVEL2disdrometer in East Ujimqin County(EUC),China.It is found that only 7.94% of the 15 664 one-min precipitation samples meet classification criteria as convective rain(CR),but its contribution to the total rainfall amount is 63.87%.Notably,40.72% of the rainfall comes from large-sized raindrops(D> 3 mm),despite the fact that large-sized raindrops account for only 1.73% of the CR total number concentration.Further results show that the mean value of mass-weighted mean diameters(Dm) is larger(2.43 mm) and generalized intercepts(lgN_(W)) is lower(3.19) in CR,aligning with a "continentallike" cluster,which is mainly influenced by the joint impact of in-cloud ice-based processes and the below-cloud environmental background.Also,the empirical relationships of shape-slope(μ-Λ),radar reflectivity-rain rate(Z-R),and rainfall kinetic energy(KE_(time)-Rand KE_(time)-Z) are localized.To quantitatively analyze the impact of DSD parameters on kinetic energy estimation,power-law KE_(time)-R and KE_(time)-Z relationships are derived based on the normalized gamma distribution.N_(W)takes precedence over μ in affecting variabilities of multiplicative coefficients,especially for KE_(time)-R relationship where the multiplicative coefficient is proportional to N_(W)^(-0.287).It should be noted that although the proportion of CR occurring throughout the summer is small,raindrops with lower N_(W) and larger Dmwill generate higher KE_(time),which will bring a higher potential risk of soil erosion in semi-arid regions over IMP.
基金"PSPC Régions n°2"("Projets Structurants des Pôles de Compétitivitéen région")funded by Conseil Régional Hauts-de-France and BPI.
文摘Developing the railway transport sector is a challenging scientific,economic and social research topic starting with ensuring human security.The main topic that should be developed in that sense is the ballast stability and dynamical behaviour under external loading and environmental changes.This paper investigates the effect of particle size distribution and normal pressure on the mechanical response of a ballast bed.Grading curves of ballast layers with different sizes are illustrated to discuss their strength behaviour under various strains to deduce the significant effect on the direct shear performance of the ballast layer.Direct shear tests with different Particle Size Distribution(PSD)were reproduced using the Discrete Element Method(DEM).It is noticed that when the number of small-sized ballast increases,the shear strength and the friction angle increase to varying degrees under different normal pressures,with an average increase of 27%and 8%,respectively.When the number of large-sized ballast decreases,the shear strength and the friction angle decrease to varying degrees under different normal pressures,with an average decrease of 6%and 3%,respectively.
基金National Natural Science Foundation of China(U2242203, 41975138, 42075086, 42275008)Guangdong Basic and Applied Basic Research Foundation (2023A1515011971)Science Technology Research Program of Guangdong Meteorological Service (GRMC2021Q01)。
文摘The raindrop size distribution(DSD) is a significant characteristic of precipitation physics,which plays a crucial role in improving the accuracy of radar quantitative precipitation estimation and prediction.There is an effect of atmospheric circulation and weather sy stems in South China,with frequent precipitation and differences in regional features,resulting in a limited understanding of the DSD characteristics and their impact mechanisms in the region. In this study,six ground-based two-dimensional video di sdrometers(2DVDs) were used to analyze the DSD of inland and coastal in South China during the five-year(2016-2020) monsoon seasons(April to September),ERA5 reanalysis data and MODIS cloud property products were also used to investigate the dynamics and microphysical characteristics of monsoon precipitation.Compared to inland rainfall,coastal rainfall has a higher conentration of small,medium,and diameter of less than 4.7 mm large raindrops.Considering the contributions to precipitation,the inland and coastal rainfall are dominated by convective rain,accounting for 74.8% and 84.7% of the total rainfall,respectively.The coastal rainfall has a higher the mass-weiglited mean diameter(D_(m)) value than the inland rainfall D_(m) for both the stratiform and convective rainfall.The logarithmic mean of the generalized intercept parameter(log_(10)N_(w)) in inland stratiform rain is greater than that in coastal areas,while convective rain is relatively small.Due to the impact of precipitation types and climate conditions,The Z-R relationship between inland and coastal rainfall also shows obvious differences.Compared to inland areas,there is more frequent convective activity,relatively moist near-surface conditions,and lower cloud droplet number concentrations,which contribute to larger D_(m) of raindrops in coastal areas.This study deepens the understanding of changes in South China's coastal and inland DSD and provides support for improving numerical weather forecasting in the region.
基金supported in part by the National Natural Science Foundation of China(No.52276009)。
文摘Accurate simulation of ice accretion of supercooled large droplet(SLD)is pivotal for the international airworthiness certification of large aircraft.Its complex dynamics behavior and broad particle size distributions pose significant challenges to reliable CFD predictions.A numerical model of multi-particle SLD coupling breaking,bouncing and splashing behaviors is established to explore the relationship between dynamics behavior and particle size.The results show that the peak value of droplet collection efficiencyβdecreases due to splashing.The bounce phenomenon will make the impact limit S_(m)of the water drops decrease.With the increase of the SLD particle size,the water drop bounce point gradually moves toward the trailing edge of the wing.The critical breaking diameter of SLD at an airflow velocity of 50 m/s is approximately 100μm.When the SLD particle size increases,the height of the water droplet shelter zone on the upper edge of the wing gradually decreases,and the velocity in the Y direction decreases first and then increases in the opposite direction,increasing the probability of SLD hitting the wing again.Large particle droplets have a higher effect on the impact limit S_(m)than smaller droplets.Therefore,in the numerical simulation of the SLD operating conditions,it is very important to ensure the proportion of large particle size water droplets.
基金supported by the Innovation Driven Development Foundation of Guangxi(No.AD22080035)the Open Project Funding of the Key Laboratory of Tropical Marine Ecosystem and Bioresource,Ministry of Natural Resources(No.2023-QN04)+1 种基金the Guangdong Provincial Ordinary University Youth Innovative Talent Project in 2024(No.2024KQNCX134)the Guangdong Provincial Special Fund Project for Talent Development Strategy in 2024(No.2024R3005).
文摘The investigation of whether sediment samples contain representative grain size distribution information is important for the accurate extraction of sediment characteristics and conduct of related sedimentary record studies.This study comparatively analyzed the numerical and qualitative differences and the degree of correlation of 36 sets of the characteristic parameters of surface sediment parallel sample grain size distribution from three sampling profiles at Jinsha Bay Beach in Zhanjiang,western Guangdong.At each sampling point,five parallel subsamples were established at intervals of 0,10,20,50,and 100 cm along the coastline.The research findings indicate the following:1)relatively large differences in the mean values of the different parallel samples(0.19–0.34Φ),with smaller differences observed in other characteristic grain sizes(D_(10),D_(50),and D_(90));2)small differences in characteristic values among various parallel sample grain size parameters,with at least 33%of the combinations of qualitative results showing inconsistency;3)50%of the regression equations between the skewness of different parallel samples displaying no significant correlation;4)relative deviations of−47.91%to 27.63%and−49.20%to 2.08%existing between the particle size parameters of a single sample and parallel samples(with the average obtained)at intervals of 10 and 50 cm,respectively.As such,small spatial differences,even within 100 cm,can considerably affect grain size parameters.Given the uncertain reasons underlying the representativeness of the samples,which may only cover the area immediately surrounding the sampling station,researchers are advised to design parallel sample collection strategies based on the spatiotemporal distribution characteristics of the parameters of interest during sediment sample collection.This study provides a typical case of the comparative analysis of parallel sample grain size parameters,with a focus on small spatial beach sediment,which contributes to the enhanced understanding of the accuracy and reliability of sediment sample collection strategies and extraction of grain size information.
基金supported by Grants in Aid from the Japan Society for the Promotion of Science(JSPS)KAKENHI[grant numbers JP21H01163 and JP23H00149].
文摘A double-moment cloud microphysics scheme requires an assumption for cloud droplet size distributions(DSDs).However,since observations of cloud DSDs are limited,default values for shape parameters and cloud condensation nuclei activation parameters are often used in numerical simulations.In this study,the effects of cloud DSDs on numerical simulations of warm stratiform precipitation around Tokyo are investigated using the Japan Meteorological Agency's non-hydrostatic model,which incorporates a double-moment cloud microphysics scheme.Simulations using the default cloud DSD showed higher cloud droplet number concentrations and lower radar reflectivity than observed data,suggesting that the default cloud DSD is too narrow.Simulations with a cloud DSD based on in situ cloud observations corrected these errors.In addition,observation-based cloud DSDs affected rainfall amounts through the autoconversion rate of cloud water and improved the threat scores.These results suggest that realistic cloud DSDs should be provided for double-moment cloud microphysics schemes in scientific studies.
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
基金support by the National Key R&D Program of China(2022YFB4202201)Ordos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutrality,Science and Technology Department of Jiangsu Province under Grand BE2022040Support Plan for Young Excellent Talents of the Department of Energy and Power Engineering,Tsinghua University.
文摘The determination of bubble size distribution is a prerequisite for the study of gas-liquid two-phase flow characteristics in electrolytic cells.Here the departure diameter of hydrogen bubbles and oxygen bubbles and their detachment process from a nickel wire electrode during water electrolysis are studied using high-speed photography.The results show that in industrial alkaline environment,the departure diameters of most hydrogen bubbles and oxygen bubbles are generally smaller than 60μm and 250μm with the current density ranges from 0.15 to 0.35A/cm^(2).The adhesion force of hydrogen bubbles on a nickel wire is found to be so weak that they can separate with a tiny size.The diameters of oxygen bubbles conform to normal distribution,and its distribution range widens with the increase of current density.The theoretical analysis show that the comprehensive conversion rate of current-to-bubble is unexpectedly low especially at low current densities,which may be attributed to the loss of gas components caused by bubble detachment mode.The majority of oxygen bubbles detach by a sudden bounce after coalescence,which may bring strong disturbance to the concentration boundary layer.This also indicates the coalescence-induced bubble departure mode may occupy a dominant position in the electrolyzers.
基金funded by the Faculty of Geography under the scheme of“Dana Hibah Penelitian Mandiri Dosen Tahun 2023 Tahap 1”。
文摘Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2).
基金supported by the program from National Natural Science Foundation of China(Nos.42207555,41977332)Natural Science Basic Research Program of Shaanxi(Nos.2021JQ-971,2022JQ-242)+2 种基金Open Foundation of SKLLQG(No.SKLLQGZR2101)Strategic Priority Research Program of CAS(No.XDB40000000)the support of the Youth Innovation Promotion Association CAS(No.2020407)。
文摘Water-soluble inorganic ions(WSIIs)play a pivotal role in atmospheric chemical reactions,particularly influencing the formation of secondary particulate matter.A comprehensive grasp of the vertical distribution of atmospheric pollutants holds immense significance in understanding the diffusion and transportation of these pollutants.This study investigates the WSIIs of PM_(2.5)and size-segregated particles at the top(~2060 m a.s.l.)and foot of Mt.Hua during the winter of 2020.All the measured ions present significant higher concentrations(1.9~6.9 times)at the foot than the top.Cl^(-)and K^(+)at the foot are more than 4 times of those at the top,whereas Ca^(2+)and Mg^(2+)are only 1.3-1.9 times higher.The particle size distribution of NO_(3)^(-),SO_(4)^(2-),K^(+)and Cl^(-)demonstrate a single peak distribution(0.7-1.1μm)at the foot,but with a bimodal distribution(0.7-1.1μm and 4.7-5.8μm)at the top.These differences suggest that the aerosol at the alpine region is mainly transported via long-distance from Northwest/North China,but limited influenced by vertical transport through valley breeze.The changes of concentration and size distribution of WSIIs in dust event and non-dust period indicate that the effects of dust event on aerosols at ground surface were weaker than that of the free troposphere of Guanzhong Plain.Notably,our study underscores the dominant influence of NO_(3)^(-)in shaping the gas-particle distribution of ammonia within the winter free troposphere.Our results highlight the significant role of long-range transport on aerosols in the free troposphere in Guanzhong Plain,Northwest China.
基金supported by the National Natural Science Foundation of China(Grant Nos.42022038,and 42090030).
文摘Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.
基金the National Natural Science Foundation of China (21706075)Guangzhou Municipal Science and Technology Project (202201011269)
文摘The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption model,but this does not eliminate the deviation between experiments and simulations caused by particle size distribution in practice.In this study,the population balance equation(PBE)and fixed-bed adsorption kinetics model were combined to simulate the adsorption process in a fixed-bed reactor,modeling the distribution of adsorbate uptake over time on adsorbent particles of different sizes.We integrated and optimized the PBE and fixed-bed mass transfer model in the algorithm,and the resulting combined model adopts a variable time step size,which can achieve a balance between computational efficiency and error while ensuring computational convergence.By slicing the model in the spatial dimension,multiple sets of PBE can be calculated in parallel,improving computational efficiency.The adsorption process of single-component and multi-component CO_(2)/CH_(4)/N_(2)on 4A zeolite without binder was simulated,and the influence of adsorbent particle size distribution was analyzed.Simulation results show that the assumption of average adsorbent particle size,which was commonly made in published work,will underestimate the time required for adsorbates to break through the fixed bed compared with the assumption of uniform adsorbent particle size.This model helps to consider the impact of adsorbent particle size distribution on the adsorption process,thereby improving the prediction accuracy of adsorbent performance.
文摘A kinetic 5-vertex model is used to investigate hexagon-islands formation on growing single-walled carbon nanotubes (SWCNT). In the model, carbon atoms adsorption and migration processes on the SWCNT edge are considered. These two dynamic processes are assumed to be mutually independent as well as mutually dependent as far as the whole growth of the nanotube is concerned. Key physical parameters of the model are the growth time t, the diffusion length Γ defined as the ratio of the diffusion rate D to the carbon atomic flux F and the SWCNT chiral angle. The kinetic equation that describes the nanotube edge dynamics is solved using kinetic Monte Carlo simulations with the Bortz, Kalos and Lebowitz update algorithm. The behaviors of islands density and size distribution are investigated within the growth parameters’ space. Our study revealed key mechanisms that enable the formation of a new ring of hexagons at the SWCNT edge. The growth occurs either by pre-existing steps propagation or by hexagon-islands growth and coalescence on terraces located between dislocation steps, depending on values of model parameters. This should offer a road map for edge design in nanotubes production. We also found that in appropriate growth conditions, the islands density follows Gaussian and generalized Wigner distributions whereas their size distribution at a given growth time shows a decreasing exponential trend.
基金The Special Funds for State Key Projects for Fun- damental Research (G1999022201-04).
文摘Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.
基金The Ph.D.Programs Foundation of Ministry of Edu-cation of China(No20050710006)
文摘Size distribution characteristics of intercity bus hubs in China from 1997 to 2(104 were analyzed regarding highway passenger volume as a size index of intercity bus hubs. Yearly fractal dimensions of intercity bus hub sizes were exactly calculated by a novel model. Fractal dimensions of the 200 biggest intercity bus hubs from 2000 to 2004 were 1. 486 2 to 1. 511 8, and that is consistent with fractal dimensions of Chinese urban system sizes. It showed that the size distribution of intercity bus hubs had fractal structure. Fractal dimensions from 1997 to 2004 indicated that intercity bus hub size distribution grew from bi-fractal to single fractal. It is concluded that the intercity bus hub system is in evolutionary progress, and the Central Government should support large intercity bus hubs more to optimize system structure.
基金Project supported by the National Basic Research Project(973)of China(No.2005CB422203)the National Post-Doctor Foundation of China(No.20060390990).
文摘The aerosol number concentration and size distribution were measured with the newly developed Wide-range Particle Spectrometer in summer and winter of 2006 at the urban site of Jinan City. Here reported the characteristics of fine particles of the different observation seasons. Relative high number concentrations for the particles in the diameter range of 10-500 nm were observed in both seasons. It was found that the dominant number distributed in particle diameter smaller than 100 nm and the percentage over the number concentration of all air particles is much higher than what has been measured in other urban sites over the world. The number mean diameter in summer was much smaller than in winter, strongly suggesting the different origin of ultrafine particles in different seasons. That is, particles in ultrafine mode mainly came from nucleation and new particle formation in summer while from traffic emission in winter. The diurnal variation also supported this point. Number concentration in the diameter range of 10-200 um got their peak values at noontime, well correlated with the mixing ratio of SO2 and the intensity of solar radiation in summer. While in winter, those in the same diameter range showed the main peaks during the traffic hours happened in the morning and evening.
基金supported by the Key Project of Zhe-jiang Province (No. 2006C13057)the CAS Program(No. KZCX1-YW-06-02)the Jiaxing City Project(No. 2005AZ3040).
文摘Particles of dust washed off streets by stormwater are an important pathway of polyaromatic hydrocarbons (PAHs) into urban streams. This article presented a comprehensive assessment of the size distribution of PAHs in street dust particles, the potential risks of the particles in urban streams, and the sources and sinks of PAHs in the stream network. This assessment was based on measurements of 16 PAHs from the USEPA priority list in street dust particles and river sediments in Xincheng, China. The content of total PAHs ranged from 1629 to 8986 Dg/kg in street dust particles, where smaller particles have a higher concentrations. Approximately 55% of the total PAHs were associated with particles less than 250 μm which accounted for 40% of the total mass of street dust. The PAH quantities increased from 2.41 to 46.86 μg/m2 in the sequence of new residential, rising through main roads, old town residential, commercial and industrial areas. The sediments in stream reaches in town were found to be sinks for street dust particle PAHs. The research findings suggested that particle size, land use and the hydrological conditions in the stream network were the factors which most influenced the total loads of PAH in the receiving water bodies.
基金National Natural Science Foundation of China(40730948,40830958,40921160382)National Grand Fundamental Research 973 Program of China(2009CB421502)
文摘Microphysical characteristics of the raindrop size distribution(RSD)in Typhoon Morakot(2009) have been studied through the PARSIVEL disdrometer measurements at one site in Fujian province,China during the passage of the storm from 7 to 10 August 2009.The time evolution of the RSD reveals different segments of the storm.Significant difference was observed in the microphysical characteristics between the outer rainband and the eyewall;the eyewall precipitation had a broader size distribution(a smaller slope) than the outer rainband and eye region.The outer rainband and the eye region produced stratiform rains while the eyewall precipitation was convective or mixed stratiform-convective.The RSD was typically characterized by a single peak distribution and well represented by the gamma distribution.The relations between the shape(μ)and slope(Λ)of the gamma distribution and between the reflectivity(Z)and rainfall rate(R)have been investigated.Based on the NW-Dm relationships,we suggest that the stratiform rain for the outer rainband and the eye region was formed by the melting of graupel or rimed ice particles,which likely originated from the eyewall clouds.