期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites 被引量:8
1
作者 Sufeng An Guanghui Zhang +9 位作者 Jiaqiang Liu Keyan Li Gang Wan Yan Liang Donghui Ji Jeffrey T.Miller Chunshan Song Wei Liu Zhongmin Liu Xinwen Guo 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第8期1198-1207,共10页
Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored ... Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored in porous nanomaterials is still challenging.Here,through the template-free S-assisted pyrolysis of low-cost Fe-salts with melamine(MA),porous alveolate Fe/g-C3N4 catalysts with high-density(Fe loading up to 17.7 wt%)and increased USCAD Fe sites were synthesized.The presence of a certain amount of S species in the Fe-salts/MA system plays an important role in the formation of USCAD S-Fe-salt/CN catalysts;the S species act as a"sacrificial carrier"to increase the dispersion of Fe species through Fe-S coordination and generate porous alveolate structure by escaping in the form of SO2 during pyrolysis.The S-Fe-salt/CN catalysts exhibit greatly promoted activity and reusability for degrading various organic pollutants in advanced oxidation processes compared to the corresponding Fe-salt/CN catalysts,due to the promoted accessibility of USCAD Fe sites by the porous alveolate structure.This S-assisted method exhibits good feasibility in a large variety of S species(thiourea,S powder,and NH4SCN)and Fe salts,providing a new avenue for the low-cost and large-scale synthesis of high-density USCAD metal/g-C3N4 catalysts. 展开更多
关键词 Sulfur-assisted synthesis Porous alveolate structure Ultra-small cluster and atomically dispersed active sites Fe/g-C3N4 Advanced oxidation processes
在线阅读 下载PDF
Modification of Cu/ZSM-5 catalyst with CeO_2 for selective catalytic reduction of NO_x with ammonia 被引量:15
2
作者 刘雪松 吴晓东 +1 位作者 翁端 石磊 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第10期1004-1009,共6页
Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low t... Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low temperatures, but the high-temperature activity was weakened. The catalysts were characterized by X-ray diffraction(XRD), nitrogen physisorption, inductively coupled plasma optical emission spectrometry(ICP-OES), X-ray photoelectron spectroscopy(XPS), electron paramagnetic resonance(EPR), H_2 temperature-programmed reduction(TPR) and NH_3 temperature-programmed desorption(TPD). The results showed that more CuO clusters instead of isolated Cu^(2+) species were obtained on the modified catalyst. These active CuO clusters, as well as the Cu-Ce synergistic effect, improved the redox property of the catalyst and low-temperatures SCR activity via promoting the oxidation of NO to NO_2 and fast SCR reaction. The loss in high-temperatures activity was attributed to the enhanced competitive oxidation of NH_3 by O_2 and decreased surface acidity of the catalyst. 展开更多
关键词 Cu/ZSM-5 CeO_2 modification NH3-SCR CuO clusters surface acid sites rare earths
原文传递
Enhancement of 1.54 μm emission in Er:LiNbO_3 crystal by codoping with Zn^(2+) ions
3
作者 钱艳楠 王锐 +3 位作者 徐超 邢丽丽 徐衍岭 杨春辉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第1期25-28,共4页
The enhanced intensity and lengthened lifetime of 1.54 μm emission were observed for Er:LiNbO3 crystal codoped with Zn2+ ions.The ZnO codoping led to the reduction of the green upconversion emission in Er:LiNbO3 c... The enhanced intensity and lengthened lifetime of 1.54 μm emission were observed for Er:LiNbO3 crystal codoped with Zn2+ ions.The ZnO codoping led to the reduction of the green upconversion emission in Er:LiNbO3 crystals.The decay trace of the 4S3/2→4I15/2 was ob-viously nonexponential for Er:LiNbO3 codoped with 0 and 3 mol.% ZnO,but became exponential for one codoped with 6 mol.% ZnO.The OH-absorption spectra showed after codoping with Zn2+ ions,the OH-absorption peaking position shifted from ~3495 to 3484 cm-1,and the absorption cross section decreased.These spectroscopic characteristics suggested that the improvement of 1.54 μm emission was attributed to the reduction of Er3+ cluster sites. 展开更多
关键词 1.54 μm emission Zn2+ Er3+ cluster site rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部