The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and...The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges.展开更多
This study focuses on addressing kinematic singularity analysis and avoidance issues for a space station remote manipulator system(SSRMS)-type reconfigurable space manipulator.The manipulator is equipped with a non-sp...This study focuses on addressing kinematic singularity analysis and avoidance issues for a space station remote manipulator system(SSRMS)-type reconfigurable space manipulator.The manipulator is equipped with a non-spherical wrist and two lockable passive telescopic links(LPTLs),which enable it to have both active revolute and passive prismatic joints and operate in two distinct modes.To begin with the kinematic singularity analysis,the study derives the differential kinematic equations for the manipulator and identifies the dominant Jacobian matrix that causes singularities.Subsequently,an in-depth analysis of singularities from multiple perspectives is conducted.Firstly,a kinematic singularity map method is proposed to capture the distribution of singularities within the reachable workspace.Then,the influence of the two LPTLs on singularities is thoroughly examined.Finally,a new method based on the matrix rank equivalence principle is introduced to determine singularity conditions,enabling the identification of all the singular configurations for the SSRMS-type reconfigurable manipulator.Notably,this method significantly reduces computational complexity,and the singularity conditions obtained have more concise equations.For the singularity avoidance problem,a novel method is developed,which simultaneously addresses the requirements of real-time performance,high precision,and the avoidance of both kinematic singularities and joint limit constraints.Benefiting from these excellent properties,the proposed method can effectively resolve the singularity issues encountered separately by the SSRMS-type reconfigurable manipulator in its two operational modes.Several typical simulations validate the utility of all the proposed methods.展开更多
Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in usi...Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in using CMG is the inherent geometric singularity problem, where there's no torque output along a particular direction. Space expansion method has been proposed in this work for the singularity analysis. Based on inverse mapping transformation, an expanded Jacobian matrix which is a full rank square matrix is obtained. The singular angle sets of the 3-parallel cluster and pyramid cluster are distinguished using space expansion method. An effective hybrid steering strategy, able to deal with the elliptic singularity, is further proposed. Simulation results demonstrate the excellent performance of the proposed steering logic compared to the generalized singular robust logic and pseudo inverse logic in terms of energy consumption and torque error.展开更多
Bifurcation properties of a Duffing-van der Pol system with two parameters under multi-frequency excitations are studied. Three cases are discussed: (1) λ 1 is considered as bifurcation parameter, (2) λ 2 is co...Bifurcation properties of a Duffing-van der Pol system with two parameters under multi-frequency excitations are studied. Three cases are discussed: (1) λ 1 is considered as bifurcation parameter, (2) λ 2 is considered as bifurcation parameter, and (3) λ 1 and λ 2 are both considered as bifurcation parameters. According to the definition of transition sets, the whole parametric space is divided into several different persistent regions by the transition sets for different cases. The bifurcation diagrams in different persistent regions are obtained, which provides a theoretical basis for optimal design of the system.展开更多
A two-degree-of-freedom bifurcation system for an elastic cable with 1:1 internal resonance is investigated in this paper. The transition set of the system is obtained with the singularity theory for three cases. The...A two-degree-of-freedom bifurcation system for an elastic cable with 1:1 internal resonance is investigated in this paper. The transition set of the system is obtained with the singularity theory for three cases. The whole parametric plane is divided into several different persistent regions by the transition set. The bifurcation diagrams in different persistent regions are obtained.展开更多
Singularity analysis is a basic problem of parallel mechanism, and this problem cannot be avoided in both workspace and motion planning. How to express the singularity locus in an analytical form is the research empha...Singularity analysis is a basic problem of parallel mechanism, and this problem cannot be avoided in both workspace and motion planning. How to express the singularity locus in an analytical form is the research emphasis for many researchers for a long time. This paper presents a new method for the singularity analysis of the 6-SPS parallel mechanism. The rotation matrix is described by quaternion, and both the rotation matrix and the coordinate vectors have been expanded to four-dimensional forms. Through analyzing the coupling relationship between the position variables and the orientation variables, utilizing properties of the quaternion, eight equivalent equations can be obtained. A new kind of Jacobian matrix is derived from those equations, and the analytical expression of the singularity locus is obtained by calculating the determinant of the new Jacobian matrix. The singularity analysis of parallel mechanisms, whose moving platform actuated by 6 links and the vertices of both the base and the moving platforms has been placed on a circle respectively, can be solved by this analytical expression.展开更多
Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression...(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.展开更多
Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the leas...Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the least squares method,which models seasonal deformation as a constant seasonal amplitude and phase.However,the seasonal variations are not constant from year to year,and the seasonal amplitude and phase are time-variable.In order to obtain the time-variable seasonal signal in the GPS station coordinate time series,singular spectrum analysis(SSA)is conducted in this study.We firstly applied the SSA on simulated seasonal signals with different frequencies 1.00 cycle per year(cpy),1.04 cpy and with time-variable amplitude are superimposed.It was found that SSA can successfully obtain the seasonal variations with different frequencies and with time-variable amplitude superimposed.Then,SSA is carried out on the GPS observations in Yunnan Province.The results show that the time-variable amplitude seasonal signals are ubiquitous in Yunnan Province,and the timevariable amplitude change in 2019 in the region is extracted,which is further explained by the soil moisture mass loading and atmospheric pressure loading.After removing the two loading effects,the SSA obtained modulated seasonal signals which contain the obvious seasonal variations at frequency of 1.046 cpy,it is close with the GPS draconitic year,1.040 cpy.Hence,the time-variable amplitude changes in 2019 and the seasonal GPS draconitic year in the region could be discriminated successfully by SSA in Yunnan Province.展开更多
Geothermal heat flow(GHF)is crucial for characterizing the Earth's thermal state.Compared to other regions worldwide,GHF measurements of South America are relatively sparse for mapping GHF over the continent based...Geothermal heat flow(GHF)is crucial for characterizing the Earth's thermal state.Compared to other regions worldwide,GHF measurements of South America are relatively sparse for mapping GHF over the continent based on traditional models.Here we apply the machine learning(ML)techniques to predict the GHF in South America.By comparing the global model,ML finds that South American subduction zones are hotter than the global model due to large-scale magmatism,which leads to the higher shallow arc temperatures than canonical thermomechanical and global models.Combining ML model with the local singularity analysis of heat flows,active volcanoes,and igneous rock samples,it is suggested that geothermal anomalies along the Andean Mountain Range are spatially correlated with magmatic activity in the subduction zone.It is concluded that the ML methods may provide reliable GHF prediction in regions like South America,where GHF measurements are limited and uneven.展开更多
Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gim...Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities.展开更多
A fan casing model of cantilever circular thin shell is constructed based on the geometric characteristics of the thin-walled structure of aero-engine fan casing. According to Donnelly's shell theory and Hamilton's ...A fan casing model of cantilever circular thin shell is constructed based on the geometric characteristics of the thin-walled structure of aero-engine fan casing. According to Donnelly's shell theory and Hamilton's principle, the dynamic equations axe established. The dynamic behaviors are investigated by a multiple-scale method. The effects of casing geometric parameters and motion parameters on the natural frequency of the system are studied. The transition sets and bifurcation diagrams of the system are obtained through a singularity analysis of the bifurcation equation, showing that various modes of the system such as the bifurcation and hysteresis will appear in different parameter regions. In accordance with the multiple relationship of the fan speed and stator vibration frequency, the fan speed interval with the casing vibration sudden jump is calculated. The dynamic reasons of casing cracks are investigated. The possibility of casing cracking hysteresis interval is analyzed. The results show that cracking is more likely to appear in the hysteresis interval. The research of this paper provides a theoretical basis for fan casing design and system parameter optimization.展开更多
By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation...By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.展开更多
By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 1...By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.展开更多
In order to eliminate the multipath errors existing in static short-baseline applications, a novel de-noising method based on a singular spectrum analysis (named as DSSA) is introduced to extract multipath signals. ...In order to eliminate the multipath errors existing in static short-baseline applications, a novel de-noising method based on a singular spectrum analysis (named as DSSA) is introduced to extract multipath signals. The multipath error is extracted from the double difference (DD) residuals by DSSA and then applied to the correct multipath error in subsequent measurements based on the correlation among adjacent epochs. Methods based on discrete wavelet transform (DWT) and stationary wavelet transform (SWT) are introduced as comparisons of DSSA based on analysis of a simulated signal. Real baseline residuals are tested to verify different extract methods. Results show that compared with the SWT, the DSSA improves the root mean square (RMS) of the residual by 48.6% and achieves a time reduction of 75.3%.展开更多
The primary mission of the Gravity Recovery and Climate Experiment (GRACE) satellite and its successor,GRACE Follow-On (GRACE-FO), is to provide time-variable gravity fields, and its observations have been widely used...The primary mission of the Gravity Recovery and Climate Experiment (GRACE) satellite and its successor,GRACE Follow-On (GRACE-FO), is to provide time-variable gravity fields, and its observations have been widely used in various studies. However, the nearly one-year gap between GRACE and GRACE-FO has affected our ability to obtain continuous time-variable gravity data. In this study, we use the Singular Spectrum Analysis (SSA) method to fill the nearly one-year gap between the GRACE and GRACE-FO missions, as well as the gaps within the GRACE mission itself, to generate a continuous and complete mascon product from April 2002 to December 2022. These products are evaluated at the basin scale in Greenland, Antarctica, and ten river basins worldwide, as well as across oceans. The results show that our filled data can effectively recover seasonal and interannual signals and exhibit good consistency with previous reconstructions. The products provided in this study will benefit GRACE applications related to oceans, glaciers, and terrestrial water storage.展开更多
Bifurcation properties of dynamical systems with two parameters are investigated in this paper. The definition of transition set is proposed, and the approach developed is used to investigate the dynamic characteristi...Bifurcation properties of dynamical systems with two parameters are investigated in this paper. The definition of transition set is proposed, and the approach developed is used to investigate the dynamic characteristic of the nonlin- ear forced Duffing system with nonlinear feedback controller. The whole parametric plane is divided into several persistent regions by the transition set, and then the bifurcation dia- grams in different persistent regions are obtained.展开更多
The Southern Oscillation Index (SOI) time series is analyzed by means of the singular spectrum analysis (SSA) method with 60-month window length. Two major oscillatory pairs are found in the series whose periods are q...The Southern Oscillation Index (SOI) time series is analyzed by means of the singular spectrum analysis (SSA) method with 60-month window length. Two major oscillatory pairs are found in the series whose periods are quasi-four and quasi-two years respectively. The auto-regressive model, which is developed on the basis of the Maximum Entropy Spectrum Analysis, is fitted to each of the 9 leading components including the oscillatory pairs. The prediction of SOI with the 36-month lead is obtained from the reconstruction of these extrapolated series. Correlation coefficient between predicted series and 5 months running mean of observed series is up to 0.8. The model can successfully predict the peak and duration of the strong ENSO event from 1997 to 1998. It's also shown that the proper choice of reconstructed components is the key to improve the model prediction.展开更多
An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models...An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.展开更多
We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including...We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.展开更多
基金supported by the Guangdong Province Introduced Innovative R&D Team of Big Data-Mathematical Earth Sciences and Extreme Geological Events Team(grant number 2021ZT09H399)the National Natural Science Foundation of China(grant number 42430111,42050103).
文摘The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges.
基金co-supported by the Basic Science Center Project of the National Natural Science Foundation of China(No.T2388101)the Key Program of the National Natural Science Foundation of China(No.92148203).
文摘This study focuses on addressing kinematic singularity analysis and avoidance issues for a space station remote manipulator system(SSRMS)-type reconfigurable space manipulator.The manipulator is equipped with a non-spherical wrist and two lockable passive telescopic links(LPTLs),which enable it to have both active revolute and passive prismatic joints and operate in two distinct modes.To begin with the kinematic singularity analysis,the study derives the differential kinematic equations for the manipulator and identifies the dominant Jacobian matrix that causes singularities.Subsequently,an in-depth analysis of singularities from multiple perspectives is conducted.Firstly,a kinematic singularity map method is proposed to capture the distribution of singularities within the reachable workspace.Then,the influence of the two LPTLs on singularities is thoroughly examined.Finally,a new method based on the matrix rank equivalence principle is introduced to determine singularity conditions,enabling the identification of all the singular configurations for the SSRMS-type reconfigurable manipulator.Notably,this method significantly reduces computational complexity,and the singularity conditions obtained have more concise equations.For the singularity avoidance problem,a novel method is developed,which simultaneously addresses the requirements of real-time performance,high precision,and the avoidance of both kinematic singularities and joint limit constraints.Benefiting from these excellent properties,the proposed method can effectively resolve the singularity issues encountered separately by the SSRMS-type reconfigurable manipulator in its two operational modes.Several typical simulations validate the utility of all the proposed methods.
基金support from the National Natural Science Foundation of China (No. 61403197)the National Key Research and Development Plan of China (No. 2016YFB0500901)
文摘Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in using CMG is the inherent geometric singularity problem, where there's no torque output along a particular direction. Space expansion method has been proposed in this work for the singularity analysis. Based on inverse mapping transformation, an expanded Jacobian matrix which is a full rank square matrix is obtained. The singular angle sets of the 3-parallel cluster and pyramid cluster are distinguished using space expansion method. An effective hybrid steering strategy, able to deal with the elliptic singularity, is further proposed. Simulation results demonstrate the excellent performance of the proposed steering logic compared to the generalized singular robust logic and pseudo inverse logic in terms of energy consumption and torque error.
基金Project supported by the National Natural Science Foundation of China (No. 10632040)
文摘Bifurcation properties of a Duffing-van der Pol system with two parameters under multi-frequency excitations are studied. Three cases are discussed: (1) λ 1 is considered as bifurcation parameter, (2) λ 2 is considered as bifurcation parameter, and (3) λ 1 and λ 2 are both considered as bifurcation parameters. According to the definition of transition sets, the whole parametric space is divided into several different persistent regions by the transition sets for different cases. The bifurcation diagrams in different persistent regions are obtained, which provides a theoretical basis for optimal design of the system.
基金Project supported by the National Natural Science Foundation of China (No. 10632040)
文摘A two-degree-of-freedom bifurcation system for an elastic cable with 1:1 internal resonance is investigated in this paper. The transition set of the system is obtained with the singularity theory for three cases. The whole parametric plane is divided into several different persistent regions by the transition set. The bifurcation diagrams in different persistent regions are obtained.
基金supported by the National Natural Science Foundation of China (Grant No. 50375071)the Aviation Science Foundation of China (Grant No. H0608-012)Jiangsu Province Graduate Research and Innovation Program of China (Grant No. CX07B-068z)
文摘Singularity analysis is a basic problem of parallel mechanism, and this problem cannot be avoided in both workspace and motion planning. How to express the singularity locus in an analytical form is the research emphasis for many researchers for a long time. This paper presents a new method for the singularity analysis of the 6-SPS parallel mechanism. The rotation matrix is described by quaternion, and both the rotation matrix and the coordinate vectors have been expanded to four-dimensional forms. Through analyzing the coupling relationship between the position variables and the orientation variables, utilizing properties of the quaternion, eight equivalent equations can be obtained. A new kind of Jacobian matrix is derived from those equations, and the analytical expression of the singularity locus is obtained by calculating the determinant of the new Jacobian matrix. The singularity analysis of parallel mechanisms, whose moving platform actuated by 6 links and the vertices of both the base and the moving platforms has been placed on a circle respectively, can be solved by this analytical expression.
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金supported by the National Natural Science Foundation of China under grant no.42374133the Beijing Nova Program under grant no.2022056+1 种基金the Fundamental Research Funds for the Central Universities under grant no.2462020YXZZ006the Young Elite Scientists Sponsorship Program by CAST(YESS)under grant no.2018QNRC001。
文摘(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.
基金funded by National Natural Science Foundation of China(Grant No.11803065)Natural Science Foundation of Shanghai(Grant No.22ZR1472800)。
文摘Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the least squares method,which models seasonal deformation as a constant seasonal amplitude and phase.However,the seasonal variations are not constant from year to year,and the seasonal amplitude and phase are time-variable.In order to obtain the time-variable seasonal signal in the GPS station coordinate time series,singular spectrum analysis(SSA)is conducted in this study.We firstly applied the SSA on simulated seasonal signals with different frequencies 1.00 cycle per year(cpy),1.04 cpy and with time-variable amplitude are superimposed.It was found that SSA can successfully obtain the seasonal variations with different frequencies and with time-variable amplitude superimposed.Then,SSA is carried out on the GPS observations in Yunnan Province.The results show that the time-variable amplitude seasonal signals are ubiquitous in Yunnan Province,and the timevariable amplitude change in 2019 in the region is extracted,which is further explained by the soil moisture mass loading and atmospheric pressure loading.After removing the two loading effects,the SSA obtained modulated seasonal signals which contain the obvious seasonal variations at frequency of 1.046 cpy,it is close with the GPS draconitic year,1.040 cpy.Hence,the time-variable amplitude changes in 2019 and the seasonal GPS draconitic year in the region could be discriminated successfully by SSA in Yunnan Province.
基金partially supported by the Guangdong Province Introduced Innovative R&D Team of Big Data—Mathematical Earth Sciences and Extreme Geological Events Team(No.2021ZT09H399)the National Natural Science Foundation of China(No.42430111)。
文摘Geothermal heat flow(GHF)is crucial for characterizing the Earth's thermal state.Compared to other regions worldwide,GHF measurements of South America are relatively sparse for mapping GHF over the continent based on traditional models.Here we apply the machine learning(ML)techniques to predict the GHF in South America.By comparing the global model,ML finds that South American subduction zones are hotter than the global model due to large-scale magmatism,which leads to the higher shallow arc temperatures than canonical thermomechanical and global models.Combining ML model with the local singularity analysis of heat flows,active volcanoes,and igneous rock samples,it is suggested that geothermal anomalies along the Andean Mountain Range are spatially correlated with magmatic activity in the subduction zone.It is concluded that the ML methods may provide reliable GHF prediction in regions like South America,where GHF measurements are limited and uneven.
基金supported by the National Natural Science Foundation of China (10872029)the Excellent Young Scholars Research Fund of the Beijing Institute of Technology (2007YS0202)
文摘Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities.
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘A fan casing model of cantilever circular thin shell is constructed based on the geometric characteristics of the thin-walled structure of aero-engine fan casing. According to Donnelly's shell theory and Hamilton's principle, the dynamic equations axe established. The dynamic behaviors are investigated by a multiple-scale method. The effects of casing geometric parameters and motion parameters on the natural frequency of the system are studied. The transition sets and bifurcation diagrams of the system are obtained through a singularity analysis of the bifurcation equation, showing that various modes of the system such as the bifurcation and hysteresis will appear in different parameter regions. In accordance with the multiple relationship of the fan speed and stator vibration frequency, the fan speed interval with the casing vibration sudden jump is calculated. The dynamic reasons of casing cracks are investigated. The possibility of casing cracking hysteresis interval is analyzed. The results show that cracking is more likely to appear in the hysteresis interval. The research of this paper provides a theoretical basis for fan casing design and system parameter optimization.
基金Supported by The Special Foundation of Chinese Meteorological Bureau Climate Changes Program(200920)The Special Foundation of Hunan Major Scientific and Technological Research Program(2008FJ1006)~~
文摘By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.
基金the support of the National Natural Science Foundation of China (Nos. 42250103, 41974073, and 41404053)the Macao Foundation and the preresearch project of Civil Aerospace Technologies (Nos. D020308 and D020303)funded by China’s National Space Administration, and the Specialized Research Fund for State Key Laboratories。
文摘By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.
基金The National Natural Science Foundation of China(No.51375087,50975049)the Ocean Special Funds for Scientific Research on Public Causes(No.201205035-09)
文摘In order to eliminate the multipath errors existing in static short-baseline applications, a novel de-noising method based on a singular spectrum analysis (named as DSSA) is introduced to extract multipath signals. The multipath error is extracted from the double difference (DD) residuals by DSSA and then applied to the correct multipath error in subsequent measurements based on the correlation among adjacent epochs. Methods based on discrete wavelet transform (DWT) and stationary wavelet transform (SWT) are introduced as comparisons of DSSA based on analysis of a simulated signal. Real baseline residuals are tested to verify different extract methods. Results show that compared with the SWT, the DSSA improves the root mean square (RMS) of the residual by 48.6% and achieves a time reduction of 75.3%.
基金the National Natural Science Foundation of China(E3ER0402A2,E421040401)the University of Chinese Academy of Sciences Research Start-up Grant(110400M003)the Fundamental Research Funds for the Central Universities(E2ET0411X2).
文摘The primary mission of the Gravity Recovery and Climate Experiment (GRACE) satellite and its successor,GRACE Follow-On (GRACE-FO), is to provide time-variable gravity fields, and its observations have been widely used in various studies. However, the nearly one-year gap between GRACE and GRACE-FO has affected our ability to obtain continuous time-variable gravity data. In this study, we use the Singular Spectrum Analysis (SSA) method to fill the nearly one-year gap between the GRACE and GRACE-FO missions, as well as the gaps within the GRACE mission itself, to generate a continuous and complete mascon product from April 2002 to December 2022. These products are evaluated at the basin scale in Greenland, Antarctica, and ten river basins worldwide, as well as across oceans. The results show that our filled data can effectively recover seasonal and interannual signals and exhibit good consistency with previous reconstructions. The products provided in this study will benefit GRACE applications related to oceans, glaciers, and terrestrial water storage.
基金supported by the National Natural Science Foundation of China(10632040)
文摘Bifurcation properties of dynamical systems with two parameters are investigated in this paper. The definition of transition set is proposed, and the approach developed is used to investigate the dynamic characteristic of the nonlin- ear forced Duffing system with nonlinear feedback controller. The whole parametric plane is divided into several persistent regions by the transition set, and then the bifurcation dia- grams in different persistent regions are obtained.
基金This work was supported by the" National Key Project Studies on Short-Range Climate PredictionSystem in China" (96-908-04-02).
文摘The Southern Oscillation Index (SOI) time series is analyzed by means of the singular spectrum analysis (SSA) method with 60-month window length. Two major oscillatory pairs are found in the series whose periods are quasi-four and quasi-two years respectively. The auto-regressive model, which is developed on the basis of the Maximum Entropy Spectrum Analysis, is fitted to each of the 9 leading components including the oscillatory pairs. The prediction of SOI with the 36-month lead is obtained from the reconstruction of these extrapolated series. Correlation coefficient between predicted series and 5 months running mean of observed series is up to 0.8. The model can successfully predict the peak and duration of the strong ENSO event from 1997 to 1998. It's also shown that the proper choice of reconstructed components is the key to improve the model prediction.
基金supported by the Natural Science Foundation of Shaanxi Province under Grant 2019JQ206in part by the Science and Technology Department of Shaanxi Province under Grant 2020CGXNG-009in part by the Education Department of Shaanxi Province under Grant 17JK0346。
文摘An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.
文摘We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.