This research appraises comparative analysis between single diode and double diode model of photovoltaic (PV) solar cells to enhance the conversion efficiency of power engendering PV solar systems. Single diode model ...This research appraises comparative analysis between single diode and double diode model of photovoltaic (PV) solar cells to enhance the conversion efficiency of power engendering PV solar systems. Single diode model is simple and easy to implement, whereas double diode model has better accuracy which acquiesces for more precise forecast of PV systems performance. Exploration is done on the basis of simulation results and MATLAB tool is used to serve this purpose. Simulations are performed by varying distinct model parameters such as solar irradiance, temperature, value of parasitic resistances, ideality factor of diode and number of series and parallel connected solar cells used to assemble PV array. Conspicuous demonstration is executed to analyze effects of these specifications on the efficiency curve and power vs. voltage output characteristics of PV cell for specified models.展开更多
In this paper, we present an improved circuit model for single-photon avalanche diodes without any convergence problems. The device simulation is based on Orcad PSpice and all the employed components are available in ...In this paper, we present an improved circuit model for single-photon avalanche diodes without any convergence problems. The device simulation is based on Orcad PSpice and all the employed components are available in the standard library of the software. In particular, an intuitionistic and simple voltage-controlled current source is adopted to characterize the static behavior, which can better represent the voltage-current relationship than traditional model and reduce computational complexity of simulation. The derived can implement the self-sustaining, self-quenching and the recovery processes of the SPAD. And the simulation shows a reasonable result that the model can well emulate the avalanche process of SPAD.展开更多
In the de-icing process of double-circuit direct current(DC)transmission lines on the same tower,an operational condition exists in which one circuit is de-energised and utilised as part of the de-icing current path,s...In the de-icing process of double-circuit direct current(DC)transmission lines on the same tower,an operational condition exists in which one circuit is de-energised and utilised as part of the de-icing current path,specifically designed for grounding line de-icing purposes.Accurate calculation of the floating potential of the out-of-service line is crucial for the design of de-icing devices.This study employs the upstream finite element method combined with a potential prediction correction approach to determine the floating potential of de-energised conductors.A field-circuit model is proposed for calculating conductor floating potentials under single-circuit outage conditions in double-circuit DC transmission lines.The charge dissipation process through grounding resistors with varying values is also analysed.In a�500 kV case study,the relative errors between the circuit model and electric field model calculations for the positive and negative conductor floating potentials are merely 3.66%and 0.89%,respectively,verifying the validity of the circuit model.The equivalent resistance of ion flow fields reaches magnitudes of 106Ω,significantly exceeding the intrinsic resistance of the conductors.When using voltage-limiting resistors,conductor voltages decrease significantly with a 0.5-MΩresistor,and the calculated floating potentials become 8.702 kV and−5.849 kV,reflecting reductions of 84.8%and 88.4%,respectively.This research demonstrates that the proposed method provides an effective solution for floating potential calculation during single-circuit outages in double-circuit DC lines.The analysis of charge dissipation through voltage-limiting resistors offers technical support for designing DC de-icing devices.展开更多
The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence...The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence model,using the computational fluid dynamics(CFD)code FLUENT.The detailed velocity distribution was explored with a varying initial Froude number(Fr),with consideration of the steady subcritical flow conditions of an inland tsunami.In VDLV flows,the numerical model successfully captured the inflection point in the profiles of mean streamwise velocities in the mixing-layer region around the top of short submerged vegetation.An upward and downward movement of flow occurred at the positions located just behind the tall and short vegetation,respectively.Overall,higher streamwise velocities were observed in the upper vegetation layer due to high porosity,with Pr=98%(sparse vegetation,where Pr is the porosity),as compared to those in the lower vegetation layer,which had comparatively low porosity,with Pr=91%(dense vegetation).A rising trend of velocities was found as the flow passed through the vegetation region,followed by a clear sawtooth distribution,as compared to the regions just upstream and downstream of vegetation where the flow was almost uniform.In VDLV flows,a rising trend in the flow resistance was observed with the increase in the initial Froude number,i.e.,Fr?0.67,0.70,and 0.73.However,the flow resistance in the case of SLV was relatively very low.The numerical results also show the flow structures within the vicinity of short and tall vegetation,which are difficult to attain through experimental measurements.展开更多
An accurate and complete circuit simulation model for single-photon avalanche diodes (SPADs) is presented. The derived model is not only able to simulate the static DC and dynamic AC behaviors of an SPAD operating i...An accurate and complete circuit simulation model for single-photon avalanche diodes (SPADs) is presented. The derived model is not only able to simulate the static DC and dynamic AC behaviors of an SPAD operating in Geiger-mode, but also can emulate the second breakdown and the forward bias behaviors. In particular, it considers important statistical effects, such as dark-counting and after-pulsing phenomena. The developed model is implemented using the Verilog-A description language and can be directly performed in commercial simulators such as Cadence Spectre. The Spectre simulation results give a very good agreement with the experimental results reported in the open literature. This model shows a high simulation accuracy and very fast simulation rate.展开更多
An analytical surface potential model for the single material double work function gate (SMDWG) MOSFET is developed based on the exact resultant solution of the two-dimensional Poisson equation. The model includes t...An analytical surface potential model for the single material double work function gate (SMDWG) MOSFET is developed based on the exact resultant solution of the two-dimensional Poisson equation. The model includes the effects of drain biases, gate oxide thickness, different combinations of S-gate and D-gate length and values of substrate doping concentration. More attention has been paid to seeking to explain the attributes of the SMDWG MOSFET, such as suppressing drain-induced barrier lowering (DIBL), accelerating carrier drift velocity and device speed. The model is verified by comparison to the simulated results using the device simulator MEDICI. The accuracy of the results obtained using our analytical model is verified using numerical simulations. The model not only offers the physical insight into device physics but also provides the basic designing guideline for the device.展开更多
Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were...Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were operated outdoors in two distinct climatic zones in the United States(US)over a period of three years.The degradation analysis includes the study of various quantities,such as the decrease in peak power,the reduction in current and voltage,and the variation in the fill factor.The annual degradation rate(DR)of PV modules is obtained by a linear fit of the effective maximum power evolution over time.The results indicate that m-Si and p-Si modules experienced a slight decrease in performance,with DRs of−0.83%and−1.07%,respectively.Subsequently,the HIT module exhibited a DR of−1.75%,while CdTe and CIGS modules demonstrated DRs of−2.03%and−2.45%,respectively.The a-Si/μc-Si module showed the highest DR at−3.26%.Using the Single Diode Model(SDM),we monitored the temporal evolution of physical parameters as well as changes in the shape of the I-V and P-V curves over time.We found that the key points of the I-V curve degrade over time,as do the I-V and P-V characteristics between two days approximately 30 months apart.展开更多
文摘This research appraises comparative analysis between single diode and double diode model of photovoltaic (PV) solar cells to enhance the conversion efficiency of power engendering PV solar systems. Single diode model is simple and easy to implement, whereas double diode model has better accuracy which acquiesces for more precise forecast of PV systems performance. Exploration is done on the basis of simulation results and MATLAB tool is used to serve this purpose. Simulations are performed by varying distinct model parameters such as solar irradiance, temperature, value of parasitic resistances, ideality factor of diode and number of series and parallel connected solar cells used to assemble PV array. Conspicuous demonstration is executed to analyze effects of these specifications on the efficiency curve and power vs. voltage output characteristics of PV cell for specified models.
文摘In this paper, we present an improved circuit model for single-photon avalanche diodes without any convergence problems. The device simulation is based on Orcad PSpice and all the employed components are available in the standard library of the software. In particular, an intuitionistic and simple voltage-controlled current source is adopted to characterize the static behavior, which can better represent the voltage-current relationship than traditional model and reduce computational complexity of simulation. The derived can implement the self-sustaining, self-quenching and the recovery processes of the SPAD. And the simulation shows a reasonable result that the model can well emulate the avalanche process of SPAD.
基金supported by the Science and Technology Project of State Grid Corporation of China(5200-202455431A-3-6-RW).
文摘In the de-icing process of double-circuit direct current(DC)transmission lines on the same tower,an operational condition exists in which one circuit is de-energised and utilised as part of the de-icing current path,specifically designed for grounding line de-icing purposes.Accurate calculation of the floating potential of the out-of-service line is crucial for the design of de-icing devices.This study employs the upstream finite element method combined with a potential prediction correction approach to determine the floating potential of de-energised conductors.A field-circuit model is proposed for calculating conductor floating potentials under single-circuit outage conditions in double-circuit DC transmission lines.The charge dissipation process through grounding resistors with varying values is also analysed.In a�500 kV case study,the relative errors between the circuit model and electric field model calculations for the positive and negative conductor floating potentials are merely 3.66%and 0.89%,respectively,verifying the validity of the circuit model.The equivalent resistance of ion flow fields reaches magnitudes of 106Ω,significantly exceeding the intrinsic resistance of the conductors.When using voltage-limiting resistors,conductor voltages decrease significantly with a 0.5-MΩresistor,and the calculated floating potentials become 8.702 kV and−5.849 kV,reflecting reductions of 84.8%and 88.4%,respectively.This research demonstrates that the proposed method provides an effective solution for floating potential calculation during single-circuit outages in double-circuit DC lines.The analysis of charge dissipation through voltage-limiting resistors offers technical support for designing DC de-icing devices.
文摘The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence model,using the computational fluid dynamics(CFD)code FLUENT.The detailed velocity distribution was explored with a varying initial Froude number(Fr),with consideration of the steady subcritical flow conditions of an inland tsunami.In VDLV flows,the numerical model successfully captured the inflection point in the profiles of mean streamwise velocities in the mixing-layer region around the top of short submerged vegetation.An upward and downward movement of flow occurred at the positions located just behind the tall and short vegetation,respectively.Overall,higher streamwise velocities were observed in the upper vegetation layer due to high porosity,with Pr=98%(sparse vegetation,where Pr is the porosity),as compared to those in the lower vegetation layer,which had comparatively low porosity,with Pr=91%(dense vegetation).A rising trend of velocities was found as the flow passed through the vegetation region,followed by a clear sawtooth distribution,as compared to the regions just upstream and downstream of vegetation where the flow was almost uniform.In VDLV flows,a rising trend in the flow resistance was observed with the increase in the initial Froude number,i.e.,Fr?0.67,0.70,and 0.73.However,the flow resistance in the case of SLV was relatively very low.The numerical results also show the flow structures within the vicinity of short and tall vegetation,which are difficult to attain through experimental measurements.
基金supported by the Natural Science Foundation of Jiangsu Province,China(No.BK20131379)
文摘An accurate and complete circuit simulation model for single-photon avalanche diodes (SPADs) is presented. The derived model is not only able to simulate the static DC and dynamic AC behaviors of an SPAD operating in Geiger-mode, but also can emulate the second breakdown and the forward bias behaviors. In particular, it considers important statistical effects, such as dark-counting and after-pulsing phenomena. The developed model is implemented using the Verilog-A description language and can be directly performed in commercial simulators such as Cadence Spectre. The Spectre simulation results give a very good agreement with the experimental results reported in the open literature. This model shows a high simulation accuracy and very fast simulation rate.
基金supported by the National Youth Science Foundation of China(No.61006064)the Natural Science Foundation of Education Office,Anhui Province(No.KJ2013A071)
文摘An analytical surface potential model for the single material double work function gate (SMDWG) MOSFET is developed based on the exact resultant solution of the two-dimensional Poisson equation. The model includes the effects of drain biases, gate oxide thickness, different combinations of S-gate and D-gate length and values of substrate doping concentration. More attention has been paid to seeking to explain the attributes of the SMDWG MOSFET, such as suppressing drain-induced barrier lowering (DIBL), accelerating carrier drift velocity and device speed. The model is verified by comparison to the simulated results using the device simulator MEDICI. The accuracy of the results obtained using our analytical model is verified using numerical simulations. The model not only offers the physical insight into device physics but also provides the basic designing guideline for the device.
文摘Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were operated outdoors in two distinct climatic zones in the United States(US)over a period of three years.The degradation analysis includes the study of various quantities,such as the decrease in peak power,the reduction in current and voltage,and the variation in the fill factor.The annual degradation rate(DR)of PV modules is obtained by a linear fit of the effective maximum power evolution over time.The results indicate that m-Si and p-Si modules experienced a slight decrease in performance,with DRs of−0.83%and−1.07%,respectively.Subsequently,the HIT module exhibited a DR of−1.75%,while CdTe and CIGS modules demonstrated DRs of−2.03%and−2.45%,respectively.The a-Si/μc-Si module showed the highest DR at−3.26%.Using the Single Diode Model(SDM),we monitored the temporal evolution of physical parameters as well as changes in the shape of the I-V and P-V curves over time.We found that the key points of the I-V curve degrade over time,as do the I-V and P-V characteristics between two days approximately 30 months apart.