期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
Multi-block SSD based on small object detection for UAV railway scene surveillance 被引量:34
1
作者 Yundong LI Han DONG +3 位作者 Hongguang LI Xueyan ZHANG Baochang ZHANG Zhifeng XIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第6期1747-1755,共9页
A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle surveillance.To address the limitation of small object detection,a... A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle surveillance.To address the limitation of small object detection,a multi-block SSD mechanism,which consists of three steps,is designed.First,the original input images are segmented into several overlapped patches.Second,each patch is separately fed into an SSD to detect the objects.Third,the patches are merged together through two stages.In the first stage,the truncated object of the sub-layer detection result is spliced.In the second stage,a sub-layer suppression and filtering algorithm applying the concept of non-maximum suppression is utilized to remove the overlapped boxes of sub-layers.The boxes that are not detected in the main-layer are retained.In addition,no sufficient labeled training samples of railway circumstance are available,thereby hindering the deployment of SSD.A two-stage training strategy leveraging to transfer learning is adopted to solve this issue.The deep learning model is preliminarily trained using labeled data of numerous auxiliaries,and then it is refined using only a few samples of railway scene.A railway spot in China,which is easily damaged by landslides,is investigated as a case study.Experimental results show that the proposed multi-block SSD method produces an overall accuracy of 96.6%and obtains an improvement of up to 9.2%compared with the traditional SSD. 展开更多
关键词 Deep learning Multi-block single shot MultiBox detector(ssd) Objection detection Railway scene Unmanned aerial vehicle remote sensing
原文传递
基于卷积神经网络轻量化的改进SSD异纤检测方法 被引量:4
2
作者 胡胜 王紫悦 +3 位作者 张守京 李博豪 赵小惠 刘文慧 《计算机集成制造系统》 北大核心 2025年第1期171-181,共11页
精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引... 精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引入深度可分离卷积、倒残差结构等创新性设计,将SSD算法中原有骨干特征提取网络VGGNet16替换为MobileNetv2网络;然后,对于SSD算法中生成的候选框尺寸与棉花异纤大小不匹配导致棉花背景占比过高,从而引起正负样本不均衡的问题,采用K-means++算法对棉花异纤尺寸进行聚类分析,根据聚类结果修正候选框尺寸。通过算例进行验证,结果显示所提方法在实现模型轻量化的同时有效提升了异纤检测效果和计算效率。 展开更多
关键词 异纤检测 改进ssd 卷积神经网络 K-means++聚类 轻量化
在线阅读 下载PDF
SFE-SSD: Shallow Feature Enhancement SSD for Small Object Detection 被引量:2
3
作者 Hongchen TAN Jun ZHOU +1 位作者 Shengjing TIAN Xiuping LIU 《Journal of Mathematical Research with Applications》 CSCD 2019年第6期733-744,共12页
SSD(Single Shot Multibox Detector) is one of the best object detection algorithms with both high accuracy and fast speed, but fails to detect very small size object which lacks enough resolution and enough feature inf... SSD(Single Shot Multibox Detector) is one of the best object detection algorithms with both high accuracy and fast speed, but fails to detect very small size object which lacks enough resolution and enough feature information. In order to solve this problem, the majority of existing methods improve accuracy at the cost of a heavy loss of speed. In this paper, we propose SFE-SSD(Shallow Feature Enhancement SSD) to improve performance of SSD model on small object detection based on a novel and lightweight way of feature enhancement module. Firstly,we apply deconvolution on the shallowest feature map in SSD’s feature pyramid to enlarge the feature map size and recover more feature details. Then, we introduce semantic information to the enlarged feature map by multi-scale feature fusion. In addition, SFE-SSD is designed to a parallel network structure, which could reduce loss of speed in some degree. Experimental results show that our approach achieved 78.4%m AP and is higher than baseline SSD by 1.2%on PASCAL VOC2007, especially with significant improvement on small object detection. The testing speed of SFE-SSD is 81 FPS at the cost of a little loss of speed. 展开更多
关键词 SHALLOW FEATURE enhancement OBJECT detection ssd(single shot Multibox Detetor) FEATURE FUSION strategy
原文传递
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms 被引量:1
4
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
在线阅读 下载PDF
Pedestrian Detection Method Based on SSD Model
5
作者 Xin Li Xiangao Luo Haijiang Hao 《国际计算机前沿大会会议论文集》 2019年第1期605-607,共3页
Pedestrian detection has a wide range of applications in daily life, and many fields require pedestrians to conduct detection with high precision and speed, which is an urgent problem to be solved. The traditional ped... Pedestrian detection has a wide range of applications in daily life, and many fields require pedestrians to conduct detection with high precision and speed, which is an urgent problem to be solved. The traditional pedestrian detection method improves the detection performance by improving the classification algorithm and extracting more effective features. In this paper, a pedestrian detection method is proposed based on single shot multibox detector (SSD) model, which replaces the basic network part of SSD model with inception network structure with smaller parameters, faster running speed and stronger nonlinear expression ability. A high-performance network model for pedestrian detection was based on improved SSD. The experimental results show that the proposed method is faster than the original model, and the average precision of pedestrian recognition and location is 89.6%, which is 2.6% higher than the original model. 展开更多
关键词 PEDESTRIAN detection single shot multibox detector model INCEPTION NETWORK
在线阅读 下载PDF
基于Jetson TX2的轻量化SSD模型设计
6
作者 黄建行 谢恒 +2 位作者 周益天 张新良 郑亚昕 《自动化仪表》 2025年第4期80-85,共6页
单触发多盒检测器(SSD)模型为图像目标检测提供了高效的解决方案,但增加网络深度以提高精度的方式增加了便携嵌入式设备的负荷,在实际应用场景中受到限制。考虑目标检测实时性的需求,提出了一种轻量化SSD模型。利用金字塔池化模块和多... 单触发多盒检测器(SSD)模型为图像目标检测提供了高效的解决方案,但增加网络深度以提高精度的方式增加了便携嵌入式设备的负荷,在实际应用场景中受到限制。考虑目标检测实时性的需求,提出了一种轻量化SSD模型。利用金字塔池化模块和多尺度信息融合,替代SSD网络的特征提取模块。金字塔池化模块利用多组池化核在不同尺度上提取特征,并通过横向连接的方式将多个尺度信息进行融合,在保证检测精度的同时,降低嵌入式设备的负荷。给出了在嵌入式设备Jetson TX2上的实现方案。与原SSD模型相比,轻量化SSD模型在嵌入式设备Jetson TX2上的帧率可达13帧/s,并且能够以96%的准确率正确识别佩戴口罩的人员,验证了模型的有效性。该模型为无人驾驶、无人机检测等领域提供了一种实现方案。 展开更多
关键词 深度学习 单触发多盒检测器 便携嵌入式设备 实时性 轻量化 金字塔池化 多尺度信息融合 Jetson TX2
在线阅读 下载PDF
基于SSD与图像变换的镜下矿物光片智能识别
7
作者 侯振隆 申晋容 +1 位作者 魏继康 赵文天 《东北大学学报(自然科学版)》 北大核心 2025年第6期131-137,154,共8页
在矿物识别中,当识别伴生矿物时,有时会产生漏判、误判.为了解决上述问题,开展了显微镜下矿物的智能化识别方法研究.首先,改进了SSD网络并结合图像变换构建了一种智能识别方法;其次,将该方法应用于中国辽宁省某铁矿光片的显微镜下矿物图... 在矿物识别中,当识别伴生矿物时,有时会产生漏判、误判.为了解决上述问题,开展了显微镜下矿物的智能化识别方法研究.首先,改进了SSD网络并结合图像变换构建了一种智能识别方法;其次,将该方法应用于中国辽宁省某铁矿光片的显微镜下矿物图像,通过试验证明了方法的准确性;最后,确定了学习率、批量尺寸对损失函数的影响,使用梯度下降法进一步提高了识别精度.在试验中,识别精度超过90%,最高可达100%,损失函数值最小值约为0.008.结果表明,提出的方法具有较强的矿物识别能力. 展开更多
关键词 矿物识别 深度学习 ssd 图像变换 矿物含量估算
在线阅读 下载PDF
基于特征融合的SSD视觉小目标检测 被引量:12
8
作者 王冬丽 廖春江 +1 位作者 牟金震 周彦 《计算机工程与应用》 CSCD 北大核心 2020年第16期31-36,共6页
针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值... 针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值进行调整。实验结果表明,检测精度mAP较SSD提高3.4个百分点,对小目标Bottle、Chair、Plant检测精度分别提升8.7个百分点、3.4个百分点和7.1个百分点。检测精度mAP较当前一系列性能优异的目标检测算法有显著提高。通过拓展实验进一步证明改进算法成功检测到了大多数SSD算法没有检测到的小目标,提高了平均检测准确率。 展开更多
关键词 小目标检测 特征融合 ssd(single shot Multibox detector) 特征增强 PASCAL VOC2007
在线阅读 下载PDF
基于SSD网络模型的多目标检测算法 被引量:15
9
作者 蔡汉明 赵振兴 +1 位作者 韩露 曾祥永 《机电工程》 CAS 2017年第6期685-688,共4页
针对现代化工厂中视觉机器人或智能终端处理多目标检测算法的计算任务繁重、运算速度较慢等问题,将网络通信技术应用到算法处理中进行了在线检测。对TCP/IP协议进行了研究,建立了智能终端和云端之间的关系,提出了将智能终端采集到的图... 针对现代化工厂中视觉机器人或智能终端处理多目标检测算法的计算任务繁重、运算速度较慢等问题,将网络通信技术应用到算法处理中进行了在线检测。对TCP/IP协议进行了研究,建立了智能终端和云端之间的关系,提出了将智能终端采集到的图像数据进行预处理然后使用基于TCP的Socket多线程通信方式将图像数据送入云端,在云端的多台计算机上同时使用SSD网络模型的多目标检测算法进行了并行处理,并将结果传回智能终端。利用计算机单机与智能终端在线检测在处理时间上进行了对比试验。试验结果表明:在线检测速度稍慢,但已满足实际需求;智能终端在线检测降低了对智能机器人终端硬件的要求,回收的数据可以再利用,并且可以实现算法动态升级。 展开更多
关键词 目标检测 卷积神经网络 ssd 智能机器人 SOCKET网络通信
在线阅读 下载PDF
结合乐高滤波器和SSD的低光照图像融合检测方法 被引量:3
10
作者 李琳 刘学亮 +1 位作者 赵烨 纪平 《计算机科学》 CSCD 北大核心 2021年第7期213-218,共6页
针对低光照图像背景环境复杂导致目标检测易产生误检、漏检现象,提出了一种基于SSD目标检测的改进低光照图像精度和速度的方法。该方法先对低光照图像进行增强处理,然后将处理后的低光照图像和增强图像分别输入到融入乐高滤波器的SSD网... 针对低光照图像背景环境复杂导致目标检测易产生误检、漏检现象,提出了一种基于SSD目标检测的改进低光照图像精度和速度的方法。该方法先对低光照图像进行增强处理,然后将处理后的低光照图像和增强图像分别输入到融入乐高滤波器的SSD网络结构中进行训练检测,通过得到的两种检测模型对处理后的数据集进行检测,最后融合检测结果候选框中的不重复框,筛选候选框中的重复框,标记出正确位置的目标,从而提升对低光照图像检测的精度。在网络结构不同位置融入乐高滤波器,模型参数量分别减少8.9%和29.5%,浮点运算次数下降6.8%和34.9%,检测框融合处理后检测精度得到了3%~7%的提升。该方法更符合实际应用,有效提升了低光照图像的检测速度和精度,扩大了目标检测的应用范围。 展开更多
关键词 目标检测 低光照图像 ssd算法 乐高滤波器 融合
在线阅读 下载PDF
嵌入遮挡关系模块的SSD模型的输电线路图像金具检测 被引量:11
11
作者 赵振兵 江爱雪 +2 位作者 戚银城 张薇 赵文清 《智能系统学报》 CSCD 北大核心 2020年第4期656-662,共7页
为了提升深度学习目标检测模型在输电线路金具自动化检测任务中的准确率,针对金具检测数据集中金具目标标注框之间不可避免地广泛存在相交而导致金具目标检测定位不准确的问题,本文利用相交区域的相似性作为金具目标的上下文信息,提出... 为了提升深度学习目标检测模型在输电线路金具自动化检测任务中的准确率,针对金具检测数据集中金具目标标注框之间不可避免地广泛存在相交而导致金具目标检测定位不准确的问题,本文利用相交区域的相似性作为金具目标的上下文信息,提出目标间遮挡关系的描述方法,用于规则性描述图像中金具目标间的相互遮挡,设计遮挡关系模块,并将其嵌入到单次多框检测器(single shot multibox detector,SSD)模型中。为了验证嵌入遮挡关系模块的SSD模型的有效性,选择了8类目标标注框普遍存在相交的小目标金具进行实验,实验使用的金具检测数据集的训练集和测试集中金具目标数分别为6271和1713。实验证明,原始SSD模型的平均精度均值(mean average precision,mAP)为72.10%,嵌入遮挡关系模块的SSD模型的m AP为76.56%,性能提升了4.46%。 展开更多
关键词 输电线路金具 遮挡度 遮挡关系描述 遮挡关系模块 ssd 标注框 目标检测 深度学习
在线阅读 下载PDF
用于交通标志检测的窗口大小聚类残差SSD模型 被引量:4
12
作者 宋青松 王兴莉 +3 位作者 张超 陈禹 宋焕生 KHATTAK Asad Jan 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第10期133-140,共8页
SSD通常被认为适合于求解小目标图像检测问题,但在特征表征和检测效率两方面还存在改进空间.提出一种聚类残差SSD模型,一方面将原始SSD模型中的VGG16基础网络替换为更深的ResNet50残差网络,以改善特征表征能力.另一方面采用K-均值聚类... SSD通常被认为适合于求解小目标图像检测问题,但在特征表征和检测效率两方面还存在改进空间.提出一种聚类残差SSD模型,一方面将原始SSD模型中的VGG16基础网络替换为更深的ResNet50残差网络,以改善特征表征能力.另一方面采用K-均值聚类算法取代盲目搜索机制,确定SSD中默认窗口的大小,以改善检测效率.针对德国交通标志检测数据集,模型获得了97.1%mAP和每幅图像0.07 s的检测速度.针对中国交通标志数据集,模型获得89.7%mAP和每幅图像0.08 s的检测速度.与原始SSD模型比较,本文所提模型的检测性能得到改善. 展开更多
关键词 交通标志检测 深度学习 单拍多盒探测器(ssd) K-均值 聚类
在线阅读 下载PDF
基于MobileNetV2和IFPN改进的SSD垃圾实时分类检测方法 被引量:15
13
作者 赵珊 刘子路 +1 位作者 郑爱玲 高雨 《计算机应用》 CSCD 北大核心 2022年第S01期106-111,共6页
针对垃圾分类检测任务中检测目标尺寸不一和小目标检测精度不高等问题,构建一种基于隐式特征金字塔网络(IFPN)和MobileNetV2的改进SSD模型的分类检测方法,对垃圾进行实时分类检测。首先,将改进后的MobileNetV2引入SSD,加入带有空洞卷积... 针对垃圾分类检测任务中检测目标尺寸不一和小目标检测精度不高等问题,构建一种基于隐式特征金字塔网络(IFPN)和MobileNetV2的改进SSD模型的分类检测方法,对垃圾进行实时分类检测。首先,将改进后的MobileNetV2引入SSD,加入带有空洞卷积的空间金字塔池化模块(ASPP),在降低网络模型计算复杂度的同时保证网络实时性和精确性;其次,采用IFPN从网络的深层到浅层逐级融合SSD,更精确地检测出小目标;最后,使用Focal Loss函数调节正负样本之间的权重。实验结果表明,在阈值为0.4时,所提方法比传统SSD平均精确率均值(mAP)提高了4.84个百分点,检测耗时减少了72.7%,能满足边缘计算设备对模型的各项要求。 展开更多
关键词 垃圾分类 目标检测 MobileNetV2 ssd 空间金字塔池化 隐式特征金字塔网络
在线阅读 下载PDF
基于改进SSD的苹果叶部病理检测识别 被引量:10
14
作者 李辉 严康华 +2 位作者 景浩 侯锐 梁晓菡 《传感器与微系统》 CSCD 北大核心 2022年第10期134-137,共4页
针对目前主流的目标检测算法在苹果叶部病理的检测中识别速度和精度较低的问题,实现了基于改进SSD的苹果叶部病理的检测识别。首先,采用轻量级特征融合结构,融合高低层特征图特征;其次,引入通道注意力机制,提取更有效的病斑小目标特征信... 针对目前主流的目标检测算法在苹果叶部病理的检测中识别速度和精度较低的问题,实现了基于改进SSD的苹果叶部病理的检测识别。首先,采用轻量级特征融合结构,融合高低层特征图特征;其次,引入通道注意力机制,提取更有效的病斑小目标特征信息,同时使用Focal Loss损失函数代替原有的Multibox Loss损失函数,减少了训练中大量简单负样本的权值;最后,利用苹果叶部病理公共数据集进行对比实验,选取训练最优的网络。实验表明:改进的SSD比其它算法的检测效果有明显的提升。 展开更多
关键词 苹果叶部病理检测 ssd算法 特征融合 通道注意力机制
在线阅读 下载PDF
基于SSD网络的电梯内电动自行车检测研究 被引量:2
15
作者 黄鹏 房志明 +3 位作者 朱曼 黄中意 叶锐 刘泳琪 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第2期167-172,共6页
为减少因电动自行车违规操作而造成的消防安全事故,杜绝电动自行车进电梯的违规行为,基于深度学习SSD目标检测网络,使用VGG16、EfficientNet、MobileNet 3种主干网络,研究SSD网络对电梯内电动自行车检测的可行性,分析比较3种网络的检测... 为减少因电动自行车违规操作而造成的消防安全事故,杜绝电动自行车进电梯的违规行为,基于深度学习SSD目标检测网络,使用VGG16、EfficientNet、MobileNet 3种主干网络,研究SSD网络对电梯内电动自行车检测的可行性,分析比较3种网络的检测效果,并提出基于双摄的检测方法,进一步提高电梯场景下检测准确度,减少误检误报警。研究结果表明:SSD检测网络对电梯内电动自行车检测效果良好,其中SSD_MobileNet网络更适用于工业领域,双摄检测方法的检测准确率均大于90%。 展开更多
关键词 消防安全 深度学习 电动自行车进电梯 双摄检测 ssd 主干网络
在线阅读 下载PDF
基于注意力与特征融合的改进SSD目标检测算法 被引量:3
16
作者 王海勇 王志青 《软件》 2023年第4期1-5,共5页
针对目标检测中检测精度低且小目标检测较难的问题,提出了一种基于注意力机制与特征融合的改进SSD目标检测算法。在标准SSD目标检测模型基础上,使用深层特征提取网络ResNet50作为主干网络,在特征提取网络中引入通道-空间注意力机制增强... 针对目标检测中检测精度低且小目标检测较难的问题,提出了一种基于注意力机制与特征融合的改进SSD目标检测算法。在标准SSD目标检测模型基础上,使用深层特征提取网络ResNet50作为主干网络,在特征提取网络中引入通道-空间注意力机制增强特征图语义信息,计算特征图中像素点之间的影响。最后,将低层特征与高层语义信息进行Concat特征融合,充分利用不同特征图之间的关联信息。此外,使用GIOU代替传统IOU来计算框间的交并比,同时考虑正负样本不均衡的情况,选择Focal损失函数,重新定义了损失函数。实验采用PASCAL VOC开源数据集进行仿真验证,并与传统SSD目标检测算法进行对比,准确率得到了一定的提高,验证了该算法对目标检测的有效性。 展开更多
关键词 目标检测 单阶多层检测器 注意力机制 特征融合
在线阅读 下载PDF
一种改进的SSD红外舰船目标检测算法 被引量:1
17
作者 王岩 娄树理 《烟台大学学报(自然科学与工程版)》 CAS 2023年第4期487-493,共7页
针对海战场舰船目标检测精度和速度要求高的技术难题,提出一种改进的SSD红外舰船目标检测算法,通过改进ResNet-50网络以提高整体网络性能;引入Mosaic数据增强方法对图像进行数据增强,提高检测效率和丰富检测物体的背景;引入ECANet通道... 针对海战场舰船目标检测精度和速度要求高的技术难题,提出一种改进的SSD红外舰船目标检测算法,通过改进ResNet-50网络以提高整体网络性能;引入Mosaic数据增强方法对图像进行数据增强,提高检测效率和丰富检测物体的背景;引入ECANet通道注意力机制,提高对舰船目标的识别能力,降低舰船目标的漏检率和误检率;使用余弦退火衰减学习率来优化网络。实验结果表明,在保证检测速度的基础上,改进后算法的检测精度均值达到98.8%,对红外舰船目标有着很好的检测效果。 展开更多
关键词 ssd算法 ResNet-50网络 数据增强 红外舰船
在线阅读 下载PDF
注意力机制改进轻量SSD模型的海面小目标检测 被引量:29
18
作者 贾可心 马正华 +1 位作者 朱蓉 李永刚 《中国图象图形学报》 CSCD 北大核心 2022年第4期1161-1175,共15页
目的海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定... 目的海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定的小目标检测模型对海面目标的检测效果还有待验证。为此,在标准的SSD(single shot multi Box detector)目标检测模型基础上,结合Xception深度可分卷积,提出一种轻量SSD模型用于海面目标检测。方法在标准的SSD目标检测模型基础上,使用基于Xception网络的深度可分卷积特征提取网络替换VGG-16(Visual Geometry Group network-16)骨干网络,通过控制变量来对比不同网络的检测效果;在特征提取网络中的exit flow层和Conv1层引入轻量级注意力机制模块来提高检测精度,并与在其他层引入轻量级注意力机制模块的模型进行检测效果对比;使用注意力机制改进的轻量SSD目标检测模型和其他几种模型分别对海面目标检测数据集中的小目标和正常目标进行测试。结果为证明本文模型的有效性,进行了多组对比实验。实验结果表明,模型轻量化导致特征表达能力降低,从而影响检测精度。相对于标准的SSD目标检测模型,本文模型在参数量降低16.26%、浮点运算量降低15.65%的情况下,浮标的平均检测精度提高了1.1%,漏检率减小了3%,平均精度均值(mean average precision,mAP)提高了0.51%,同时,保证了船的平均检测精度,并保证其漏检率不升高,在对数据集中的小目标进行测试时,本文模型也表现出较好的检测效果。结论本文提出的海面小目标检测模型,能够在压缩模型的同时,保证模型的检测速度和检测精度,达到网络轻量化的效果,并且降低了小目标的漏检率,可以有效实现对海面小目标的检测。 展开更多
关键词 深度学习 目标检测 注意力机制 深度可分卷积 ssd 海面小目标检测
原文传递
特征增强的SSD算法及其在目标检测中的应用 被引量:36
19
作者 谭红臣 李淑华 +1 位作者 刘彬 刘秀平 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第4期573-579,共7页
针对多尺度单发射击检测(SSD)算法不同尺度的特征层很难进行融合互补问题,提出一种特征增强的SSD(FE-SSD)算法.首先对SSD算法的金字塔特征层中,每一尺度的特征进行尺寸不变的卷积操作;然后将卷积前与卷积后的特征进行特征融合操作,进而... 针对多尺度单发射击检测(SSD)算法不同尺度的特征层很难进行融合互补问题,提出一种特征增强的SSD(FE-SSD)算法.首先对SSD算法的金字塔特征层中,每一尺度的特征进行尺寸不变的卷积操作;然后将卷积前与卷积后的特征进行特征融合操作,进而产生一组新的金字塔特征层;最后在新产生的金字塔特征层上执行目标的检测与定位任务.在PASCALVOC2007公共数据库上进行实验,当输入图像尺寸为300×300时,检测精度(mAP)达到78.0%,检测速度(FPS)达到82.5帧/s.此外,在拓展实验中,文中算法对图像中模糊目标的检测效果也优于SSD算法. 展开更多
关键词 ssd算法 目标检测 特征融合 网络结构
在线阅读 下载PDF
基于SSD的粮仓害虫检测研究 被引量:17
20
作者 邓壮来 汪盼 +3 位作者 宋雪桦 王昌达 陈娟 吴立亚 《计算机工程与应用》 CSCD 北大核心 2020年第11期214-218,共5页
为了对粮仓害虫进行有效地检测,减少粮食损失,提出一种基于SSD的粮仓害虫检测方法。该方法利用多个尺度的卷积特征图来检测害虫。通过轻量化模型结构和优化损失函数来提高SSD的训练速度和检测效率。实验将6类高爆发的粮仓害虫图像进行... 为了对粮仓害虫进行有效地检测,减少粮食损失,提出一种基于SSD的粮仓害虫检测方法。该方法利用多个尺度的卷积特征图来检测害虫。通过轻量化模型结构和优化损失函数来提高SSD的训练速度和检测效率。实验将6类高爆发的粮仓害虫图像进行训练和测试,结果表明:该方法相比较于当前主流的目标检测方法在对粮仓害虫检测中具有更高的mAP。 展开更多
关键词 粮仓害虫 粮食损失 目标检测 ssd MAP
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部