Cryptographic properties of the single cycle T-function's output sequences are investigated.Bounds of autocorrelation functions of the kth coordinate sequence and bounds of state output sequence are calculated res...Cryptographic properties of the single cycle T-function's output sequences are investigated.Bounds of autocorrelation functions of the kth coordinate sequence and bounds of state output sequence are calculated respectively.The Maximum Sidelobe Ratio(MSR) of the kth coordinate sequence and the MSR of state output sequence are given respectively.The bounds of autocorrelation functions show that the values of autocorrelation functions are large when shifts are small.Comparisons of the autocorrelations between the state output sequence and coordinate output sequence are illustrated.The autocorrelation properties demonstrate that T-functions have cryptographic weaknesses and the illustration result shows coordinate output sequences have better autocorrelation than that of state output sequences.展开更多
Four kinds of sequences generated by single cycle triangular function (T-function) are investigated to check the possibility for a single cycle T-function to be a cryptographic component in stream ciphers. Based on ...Four kinds of sequences generated by single cycle triangular function (T-function) are investigated to check the possibility for a single cycle T-function to be a cryptographic component in stream ciphers. Based on the special properties of single cycle T-function and an algorithm due to Wei, linear complexities of these four kinds of sequence are all acquired. The results show that single cycle T-function sequences have high linear complexity. Therefore, T-function satisfies the essential requirements being a basic component of stream cipher.展开更多
Single thermal cycle simulation tests were carried out for X80 high strength steel pipes from three steel mills by a Gleeble 3500HS thermal simulation test machine,and coincidence degree of the thermal simulation curv...Single thermal cycle simulation tests were carried out for X80 high strength steel pipes from three steel mills by a Gleeble 3500HS thermal simulation test machine,and coincidence degree of the thermal simulation curve with the set curve under heat inputs of 6–30 kJ/cm was observed;The relationship between different heat inputs and microstructure,impact toughness and hardness of steel pipe CGHAZ(coarse grain heat affected zone)was studied by metallographic examination,impact test and hardness test.The results show that with the increase of heat input,original austenite grain size increases gradually,the lath bainite ratio decreases and the granular bainite ratio increases.The impact toughness of C steel pipe is lower than those of A and B steel pipe,and the impact toughness of CGHAZ from the three steel pipes show different trends:for A steel pipe CGHAZ,impact toughness increases first and then decreases,with the highest value of 270–320 J under 20–25 kJ/cm;for B steel pipe CGHAZ,impact toughness decreases slightly;for C steel pipe CGHAZ,impact toughness increases,with the highest value of 260–300 J under 25 kJ/cm.As the heat input increases,the hardness of three X80 steel pipes CGHAZ shows a decreasing trhighend,and C steel pipe has the largest decreasing range.展开更多
The paper studied the relationship between microstructure and shape recovery characteristics by using colored microstructure analysis under polarized light on the thermomechanical cycled CuAlNi single crystals. The tw...The paper studied the relationship between microstructure and shape recovery characteristics by using colored microstructure analysis under polarized light on the thermomechanical cycled CuAlNi single crystals. The two-way shape memory effect in quenched thin bar resulted from the preferential formation/extinction of martensite variant due to the internal quench stress, and the variant was formed at an angle of about 45 deg. with the tension direction ([001] of the βphase). Initial thermomechanical cycling under relatively low stress single variant stress-induced martensite was formed at an angle of 45 deg. with the tension and its morphology was a lath of parallel twins. More than one group of variants were formed after several training cycles and such variants also caused tilting of some thermally formed accommodated martensite. By overheating the trained sample containing stabilized multi-variants of stress-induced martensite, very coarse martensite structure with a strong asymmetry was produced, which caused the reverse two-way shape memory effect.展开更多
A mid-infrared femtosecond pulse laser with a single cycle and high intensity is an ideal driving light source for generating isolated attosecond pulses. Due to current experimental limitations, it is difficult to dir...A mid-infrared femtosecond pulse laser with a single cycle and high intensity is an ideal driving light source for generating isolated attosecond pulses. Due to current experimental limitations, it is difficult to directly achieve this type of laser light source in the laboratory. In this paper, we obtain such an ideal light source by adding a Ti sapphire pulse to the combined pulse laser consisting of two mid-infrared pulses. Specifically, by combining the synthesized pulse consisting of 8 fs/1200 nm/1.62 × 10^(14)W cm^(-2)and 12 fs/1800 nm/2.71 × 10^(14)W cm^(-2)with an additional 8 fs/800 nm/1.26 × 10^(14)W cm^(-2)Ti sapphire pulse, the resulting electric field waveform is very close to that of a 1170 nm femtosecond pulse with an intensity of 1.4 × 10^(15)W cm^(-2), a single-cycle pulse width, and a carrier-envelope phase of 0.25π. Numerical simulations show that both cases produce high-order harmonic emission spectra with broadband supercontinuum spectra, however, the bandwidth of the supercontinuum spectra and the harmonic intensities in the synthesized pulses are significantly better than those in the single1170 nm pulse. After inverse Fourier transform, we obtain 66 as a high-intensity isolated attosecond pulse, whose intensity is five orders of magnitude higher than that of a monochromatic field. Here, the phase differences between three combined pulse lasers have little effect on the numerical simulation results when they vary in the range of 0.3π.展开更多
基金supported by National Natural Science Foundation of China under Grant No.60833008,60970119the Scientific Research Foundation of Education of Department of Shaanxi Provincial Government of China under Grant No.11JK0503+1 种基金Youth Science and Technology Foundation of Xi'an University of Architecture and Technology under Grant No.QN0831,QN1024Foundation of Guangxi Key Laboratory of Information and Communications under Grant No.20902
文摘Cryptographic properties of the single cycle T-function's output sequences are investigated.Bounds of autocorrelation functions of the kth coordinate sequence and bounds of state output sequence are calculated respectively.The Maximum Sidelobe Ratio(MSR) of the kth coordinate sequence and the MSR of state output sequence are given respectively.The bounds of autocorrelation functions show that the values of autocorrelation functions are large when shifts are small.Comparisons of the autocorrelations between the state output sequence and coordinate output sequence are illustrated.The autocorrelation properties demonstrate that T-functions have cryptographic weaknesses and the illustration result shows coordinate output sequences have better autocorrelation than that of state output sequences.
基金supported by the National Natural Science Foundation of China (60833008,60803149)the Scientific Research Foundation of Education Department of Shaanxi Provincial Government of China (11JK0503)the Youth Science and Technology Foundation of Xi’an University of Architecture and Technology (QN0831,QN1024)
文摘Four kinds of sequences generated by single cycle triangular function (T-function) are investigated to check the possibility for a single cycle T-function to be a cryptographic component in stream ciphers. Based on the special properties of single cycle T-function and an algorithm due to Wei, linear complexities of these four kinds of sequence are all acquired. The results show that single cycle T-function sequences have high linear complexity. Therefore, T-function satisfies the essential requirements being a basic component of stream cipher.
基金supported by Science and Technology Research Project of Universities of Hebei Province(No.QN201.221)。
文摘Single thermal cycle simulation tests were carried out for X80 high strength steel pipes from three steel mills by a Gleeble 3500HS thermal simulation test machine,and coincidence degree of the thermal simulation curve with the set curve under heat inputs of 6–30 kJ/cm was observed;The relationship between different heat inputs and microstructure,impact toughness and hardness of steel pipe CGHAZ(coarse grain heat affected zone)was studied by metallographic examination,impact test and hardness test.The results show that with the increase of heat input,original austenite grain size increases gradually,the lath bainite ratio decreases and the granular bainite ratio increases.The impact toughness of C steel pipe is lower than those of A and B steel pipe,and the impact toughness of CGHAZ from the three steel pipes show different trends:for A steel pipe CGHAZ,impact toughness increases first and then decreases,with the highest value of 270–320 J under 20–25 kJ/cm;for B steel pipe CGHAZ,impact toughness decreases slightly;for C steel pipe CGHAZ,impact toughness increases,with the highest value of 260–300 J under 25 kJ/cm.As the heat input increases,the hardness of three X80 steel pipes CGHAZ shows a decreasing trhighend,and C steel pipe has the largest decreasing range.
文摘The paper studied the relationship between microstructure and shape recovery characteristics by using colored microstructure analysis under polarized light on the thermomechanical cycled CuAlNi single crystals. The two-way shape memory effect in quenched thin bar resulted from the preferential formation/extinction of martensite variant due to the internal quench stress, and the variant was formed at an angle of about 45 deg. with the tension direction ([001] of the βphase). Initial thermomechanical cycling under relatively low stress single variant stress-induced martensite was formed at an angle of 45 deg. with the tension and its morphology was a lath of parallel twins. More than one group of variants were formed after several training cycles and such variants also caused tilting of some thermally formed accommodated martensite. By overheating the trained sample containing stabilized multi-variants of stress-induced martensite, very coarse martensite structure with a strong asymmetry was produced, which caused the reverse two-way shape memory effect.
基金supported by the Natural Science Foundation of Jilin Province under Grant No. 20220101028JC。
文摘A mid-infrared femtosecond pulse laser with a single cycle and high intensity is an ideal driving light source for generating isolated attosecond pulses. Due to current experimental limitations, it is difficult to directly achieve this type of laser light source in the laboratory. In this paper, we obtain such an ideal light source by adding a Ti sapphire pulse to the combined pulse laser consisting of two mid-infrared pulses. Specifically, by combining the synthesized pulse consisting of 8 fs/1200 nm/1.62 × 10^(14)W cm^(-2)and 12 fs/1800 nm/2.71 × 10^(14)W cm^(-2)with an additional 8 fs/800 nm/1.26 × 10^(14)W cm^(-2)Ti sapphire pulse, the resulting electric field waveform is very close to that of a 1170 nm femtosecond pulse with an intensity of 1.4 × 10^(15)W cm^(-2), a single-cycle pulse width, and a carrier-envelope phase of 0.25π. Numerical simulations show that both cases produce high-order harmonic emission spectra with broadband supercontinuum spectra, however, the bandwidth of the supercontinuum spectra and the harmonic intensities in the synthesized pulses are significantly better than those in the single1170 nm pulse. After inverse Fourier transform, we obtain 66 as a high-intensity isolated attosecond pulse, whose intensity is five orders of magnitude higher than that of a monochromatic field. Here, the phase differences between three combined pulse lasers have little effect on the numerical simulation results when they vary in the range of 0.3π.