3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properti...3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.展开更多
This paper presents a unique and formal method of quantifying the similarity or distance between sedimentary facies successions from measured sections in outcrop or drilled wells and demonstrates its first application...This paper presents a unique and formal method of quantifying the similarity or distance between sedimentary facies successions from measured sections in outcrop or drilled wells and demonstrates its first application in inverse stratigraphic modeling. A sedimentary facies succession is represented with a string of symbols, or facies codes in its natural vertical order, in which each symbol brings with it one attribute such as thickness for the facies. These strings are called attributed strings. A similarity measure is defined between the attributed strings based on a syntactic pattern-recognition technique. A dynamic programming algorithm is used to calculate the similarity. Inverse stratigraphic modeling aims to generate quantitative 3D facies models based on forward stratigraphic modeling that honors observed datasets. One of the key techniques in inverse stratigraphic modeling is how to quantify the similarity or distance between simulated and observed sedimentary facies successions at data locations in order for the forward model to condition the simulation results to the observed dataset such as measured sections or drilled wells. This quantification technique comparing sedimentary successions is demonstrated in the form of a cost function based on the defined distance in our inverse stratigraphic modeling implemented with forward modeling optimization.展开更多
To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep ha...To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.展开更多
基金the National Natural Science Foundation of China(Nos.51988101 and 42007262).
文摘3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.
基金financially was supported by Colorado School of Minessupported by the Science and Technology Ministry of China (2016ZX05033003)+1 种基金China Academy of Sciences (XDA14010204)Sinopec (G5800-15-ZS-KJB016)
文摘This paper presents a unique and formal method of quantifying the similarity or distance between sedimentary facies successions from measured sections in outcrop or drilled wells and demonstrates its first application in inverse stratigraphic modeling. A sedimentary facies succession is represented with a string of symbols, or facies codes in its natural vertical order, in which each symbol brings with it one attribute such as thickness for the facies. These strings are called attributed strings. A similarity measure is defined between the attributed strings based on a syntactic pattern-recognition technique. A dynamic programming algorithm is used to calculate the similarity. Inverse stratigraphic modeling aims to generate quantitative 3D facies models based on forward stratigraphic modeling that honors observed datasets. One of the key techniques in inverse stratigraphic modeling is how to quantify the similarity or distance between simulated and observed sedimentary facies successions at data locations in order for the forward model to condition the simulation results to the observed dataset such as measured sections or drilled wells. This quantification technique comparing sedimentary successions is demonstrated in the form of a cost function based on the defined distance in our inverse stratigraphic modeling implemented with forward modeling optimization.
基金supported by the National Natural Science Foundation of China(No.61862041).
文摘To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.