期刊文献+
共找到61,185篇文章
< 1 2 250 >
每页显示 20 50 100
Spider web-inspired structural design for an energy-dissipating polymer binder enabling stabilized silicon anodes
1
作者 Xiangyu Lin Danna Ma +4 位作者 Ziming Zhu Shanshan Wang He Liu Xu Xu Zhaoshuang Li 《Journal of Energy Chemistry》 2025年第10期870-878,共9页
Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume ... Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume expansion,leading to structural degradation and poor cycling stability.Polymer binders play a critical role in addressing these issues by providing mechanical stabilization.Inspired by the mechanically adaptive architecture of spider webs,where stiff radial threads and extensible spiral threads act in synergy,a dual-thread architecture polymer binder(PALT)with energy dissipation ability enabled by integrating rigid and flexible domains is designed.The rigid poly(acrylic acid lithium)(PAALi)segments offer structural reinforcement,while the soft segments(poly(lipoic acid-tannic acid),LT)introduce dynamic covalent bonds and multiple hydrogen bonds that function as reversible sacrificial bonds,enhancing energy dissipation during cycling.Comprehensive experimental and computational analyses demonstrate effectively reduced stress concentration,improved structural integrity,and stable electrochemical performance over prolonged cycling.The silicon anode incorporating the PALT binder exhibits a satisfying capacity loss per cycle of 0.042% during 350 charge/discharge cycles at 3580 m A g^(-1).This work highlights a bioinspired binder design strategy that combines intrinsic rigidity with dynamic stress adaptability to advance the mechanical and electrochemical stability of silicon anodes. 展开更多
关键词 polymer binder Lithium-ion batteries silicon anodes Tannic acid
在线阅读 下载PDF
Metallized polymer current collector as“stress acceptor”for stable micron-sized silicon anodes
2
作者 Ziyi Cao Haoteng Sun +7 位作者 Yi Zhang Lixia Yuan Yaqi Liao Haijin Ji Shuaipeng Hao Zhen Li Long Qie Yunhui Huang 《Journal of Energy Chemistry》 2025年第2期786-794,I0017,共10页
Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cyclin... Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cycling leads to the accumulation of undesirable stresses,resulting in pulverization of silicon microparticles and shortened lifespan of the batteries.Herein,a composite film of Cu-PET-Cu is proposed as the current collector(CC)forμSi anodes to replace the conventional Cu CC.Cu-PET-Cu CC is prepared by depositing Cu on both sides of a polyethylene terephthalate(PET)film.The PET layer promises good ductility of the film,permitting the Cu-PET-Cu CC to accommodate the volumetric changes of silicon microparticles and facilitates the stress release through ductile deformation.As a result,theμSi electrode with Cu-PET-Cu CC retains a high specific capacity of 2181 mA h g^(-1),whereas theμSi electrode with Cu CC(μSi/Cu)exhibits a specific capacity of 1285 mA h g^(-1)after 80 cycles.The stress relieving effect of CuPET-Cu was demonstrated by in-situ fiber optic stress monitoring and multi-physics simulations.This work proposes an effective stress relief strategy at the electrode level for the practical implementation ofμSi anodes. 展开更多
关键词 Micron-sized Si anodes Metallized polymer current collector Stress relieving Electrode design
在线阅读 下载PDF
Synergistic Effect of Silicone Macromolecular Charring Agent and Ammonium Polyphosphate on Improving Flame Retardancy and Mechanical Properties of Ethylene-Butyl Acrylate Copolymer Composites
3
作者 Xuan Huo Bingchen Wu +6 位作者 Yuanmeng Lou Junlin Zhu Cui Li Lili Ma Ye-Tang Pan Chuncheng Hao Xin Wen 《Journal of Polymer Materials》 2025年第2期517-530,共14页
Power cables are important pieces of equipment for energy transmission,but achieving a good balance between flame retardancy and mechanical properties of cable sheaths remains a challenge.In this work,a novel intumesc... Power cables are important pieces of equipment for energy transmission,but achieving a good balance between flame retardancy and mechanical properties of cable sheaths remains a challenge.In this work,a novel intumescent flame retardant(IFR)system containing silicone-containing macromolecular charring agent(Si-MCA)and ammonium polyphosphate(APP)was designed to synergistically improve the flame retardancy and mechanical properties of ethylene-butyl acrylate copolymer(EBA)composites.The optimal mass ratio of APP/Si-MCA was 3/1 in EBA composites(EBA/APP-Si-31),corresponding to the best flame retardancy with 31.2% of limited oxygen index(LOI),V-0 rating in UL-94 vertical burning test,and 76.4%reduction on the peak of heat release rate(PHRR)in cone calorimeter test.The enhancement mechanism was attributed to the synergistic effect of APP/Si-MCA during combustion,including the radical-trapping effect,the dilution effect of non-flammable gases,and the barrier effect of the intumescent char layer.Meanwhile,the tensile results indicated that EBA/APP-Si-31 also exhibited good mechanical properties with the addition of maleic anhydride-grafted polyethylene(PE-g-MA)as the compatibilizer.Thus,the APP/Si-MCA combination is an effective IFRs system for preparing high-performance EBA composites,and it will promote their applications as cable sheath materials. 展开更多
关键词 Ethylene-butyl acrylate copolymer intumescent flame retardants polymer composites synergistic effect cable sheath
在线阅读 下载PDF
A thermo-associating copolymer integrated with biogenic nanosilica as a novel viscosifier in low solid drilling fluids
4
作者 Alain Pierre Tchameni Robert Dery Nagre +5 位作者 Shu-Ming Yin Li-Qiang Wang Xiu-Ying Wang Si-Yuan Zhou Guan-Qun Hou Xu-Dong Wang 《Petroleum Science》 2025年第7期2884-2904,共21页
Smart low-solid drilling fluids(SLSDFs)with thermo-controllable rheological properties and attractive thickening characteristics have recently captivated profound attention due to their low formation damage and enhanc... Smart low-solid drilling fluids(SLSDFs)with thermo-controllable rheological properties and attractive thickening characteristics have recently captivated profound attention due to their low formation damage and enhanced cuttings lifting capacity.However,their applications to deep hole drilling at high temperatures have remained limited because of the thermal instability and environmental constraints of the thermo-associating polymers as additives.This work explored the synergistic benefits of thermo-associating polymer and biogenic nano-silica(B-SiNP)extracted from rice husk to improve the thermo-stability of SLSDF.This study shows that the nano-hybrid,TAP-S based on vinyl-terminated B-SiNP could potentially mitigate the limiting performance of conventional LSDF(F-2)caused by the failure of thermo-associating copolymers under elevated temperatures.TAP-S bearing drilling fluid(F-3)could preserve more than 5.6-fold of its initial properties(ca.apparent viscosity,plastic viscosity,yield point,and gel strength)with a nearly flat-gel profile in the temperature range of 25-230℃,which was higher than those of the counterpart F-2 and base fluid according to the results of rheological tests analysis.In addition,TAP-S exhibited an abrupt thermo-thickening characteristic with a magnitude declining by only 1.05-fold and the activation Gibbs free energy of 1339 kJ/mol above the plateau(ca.130℃),reflecting its less sensitivity compared to F-2 under a continuous heating process.As a result,a lower temperature was required to drive the dehydration of the residual fraction of lower critical solution temperature(LCST)in nano-hybrid structures than TAP according to the results of DSC analysis.Thus,lower energy was expected to disintegrate the residual hydrogen bonds formed between the LCST chains and surrounding water molecules at elevated temperatures.Moreover,TAP-S formed a solid-micro-crosslinking structure network which exhibited a more stable hydrodynamic diameter as revealed by DLS analysis.Compared with TAP,TAP-S consisted of a larger composite B-SiNP-TAP integrated spatial network structure based on the results of environmental scanning electron microscope,which conferred a degree of thermal conductivity characteristic for improved temperature resistance.This contributed to the effective binding onto bentonite particles for protection and maintained a relatively stable bentonite particle dispersion according to the results of EPM and particle size distribution analyses.Consequently,TAP-S fortified drilling fluid demonstrates improved rheological and filtration performance under severe downhole conditions.Therefore,TAP-S,the thermo-associating copolymer integrated with B-SiNP could find potential application as an eco-friendly viscosifier in LSDFs for deep-well drilling operations. 展开更多
关键词 polymer nano-hybrid Thermo-associating copolymer Biogenic nanosilica Rheological properties High temperature Low-solid drilling fluids
原文传递
Tribological behaviors of AZ91D magnesium alloy under the lubrication of oil suspended synthetic magnesium silicate hydroxide nanotubes 被引量:1
5
作者 Y.L.Yin H.L.Yu +7 位作者 H.M.Wang X.C.Ji Z.Y.Song X.Y.Zhou M.Wei P.J.Shi W.Zhang C.F.Zhao 《Journal of Magnesium and Alloys》 2025年第1期379-397,共19页
Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological b... Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological behavior of AZ91D magnesium alloy rubbed against GCr15 steel was studied under lubricating oil with surface-modified MSH nanotubes as additives.The effects of the concentration,applied load,and reciprocating frequency on the friction and wear of the AZ91D alloy were studied using an SRV-4 sliding wear tester.Results show a decrease of 18.7–68.5%in friction coefficient,and a reduction of 19.4–54.3%in wear volume of magnesium alloy can be achieved by applying the synthetic serpentine additive under different conditions.A suspension containing 0.3 wt.%MSH was most efficient in reducing wear and friction.High frequency and medium load were more conducive to improving the tribological properties of magnesium alloys.A series of beneficial physical and chemical processes occurring at the AZ91D alloy/steel interface can be used to explain friction and wear reduction based on the characterization of the morphology,chemical composition,chemical state,microstructure,and nanomechanical properties of the worn surface.The synthetic MSH,with serpentine structure and nanotube morphology,possesses excellent adsorbability,high chemical activity,and good self-lubrication and catalytic activity.Therefore,physical polishing,tribochemical reactions,and physicalchemical depositions can occur easily on the sliding contacts.A dense tribolayer with a complex composition and composite structure was formed on the worn surface.Its high hardness,good toughness and plasticity,and prominent lubricity resulted in the improvement of friction and wear,making the synthetic MSH a promising efficient oil additive for magnesium alloys under boundary and mixed lubrication. 展开更多
关键词 Magnesium alloy Oil lubrication Tribological behavior Magnesium silicate hydroxide SERPENTINE
在线阅读 下载PDF
Estimation of Chloride Diffusivity in Hydrated Tricalcium Silicate Using a Hydration-Diffusion Integrated Method
6
作者 WANG Xin SHEN Dejian +2 位作者 TAO Sijie LIU Ruixin WU Shengxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期49-64,共16页
This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydra... This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age. 展开更多
关键词 tricalcium silicate simulation method chloride diffusion coefficient pore solution
原文传递
Iron-nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption 被引量:1
7
作者 Yi Hu Yijia Zhou +4 位作者 Lijia Liu Qiang Wang Chunhong Zhang Hao Wei Yudan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期578-590,共13页
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni... Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research. 展开更多
关键词 hypercrosslinked polymers porous carbon iron-nitrogen doping annealing
在线阅读 下载PDF
Dynamic Structural Colors in Helical Superstructures:from Supramolecules to Polymers 被引量:1
8
作者 Bo Ji Lang Qin Yan-Lei Yu 《Chinese Journal of Polymer Science》 2025年第3期406-428,共23页
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.... Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact. 展开更多
关键词 Structural colors Cholesteric liquid crystals Elastomers polymer network
原文传递
The second near-infrared (NIR-II) window excitable/emissive organic/polymeric fluorescent molecules for bioimaging application 被引量:1
9
作者 Guannan Liu Chenguang Wang Geyu Lu 《Journal of Innovative Optical Health Sciences》 2025年第3期25-43,共19页
The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI ... The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI with NIR-II window excitation (1064nm/other wavelength beyond 1000nm) can afford deeper tissue penetration depth with high clarity due to the merits of suppressed photon scattering and diminished autofluorescence. In this review, we have summarized NIR-II window excitable/emissive organic/polymeric fluorophores recently developed. The characteristics of these fluorophores such as chemical structures and photophysical properties have also been critically discussed. Furthermore, the latest development of noninvasive in vivo FLI with NIR-II excitation was highlighted. The ideal imaging results emphasized the importance of NIR-II excitation of these fluorophores in enabling deep tissue penetration and high-resolution imaging. Finally, a perspective on the challenges and prospects of NIR-II excitable/emissive organic/polymeric fluorophores was also discussed. We expected this review will be served as a source of inspiration for researchers, stimulating the creation of novel NIR-II excitable fluorophores and fostering the development of bioimaging applications. 展开更多
关键词 Fluorescence imaging NEAR-INFRARED excitation wavelength organic fluorophores conjugated polymers
原文传递
Convenient and highly efficient adsorption of diosmetin from lemon peel by magnetic surface molecularly imprinted polymers 被引量:1
10
作者 Dongliang Xie Yi Kuang +12 位作者 Bingnan Yuan Yunlong Zhang Chenyu Ye Yuyi Guo Hua Qiu Juanna Ren Saud O.Alshammari Qamar A.Alshammari Zeinhom M.El-Bahy Kui Zhao Zhanhu Guo Qingqing Rao Shengxiang Yang 《Journal of Materials Science & Technology》 2025年第8期159-170,共12页
As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a ... As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a wide range of sources in traditional Chinese medicine like spider fragrance,spearmint and chrysanthemum,as well as in Citrus fruit.However,traditional analytical methods such as silica gel column chromatography face multiple challenges in the selective extraction of diosmetin from biological materials and traditional Chinese medicinal materials.Therefore,it is urgent to develop a new type of absorbent with high efficiency,recyclability and good specificity to diosmetin.In this investigation,a magnetic surface molecularly imprinted polymer(labeled as Diosmetin/SMIPs)was synthesized employing magnetic nanoparticles as the carrier and 4-vinylpyridinyl(4-VP)as the functional monomer by surface imprinting technology.The functional monomer was screened by the binding energy(△E)between functional monomers and template molecules via computational simulation.The Diosmetin/SMIPs had a high level of specific recognition and adsorption capability towards diosmetin with a 20.25 mg g^(-1) adsorption capacity and an imprinting factor(IF)of 2.28.Additionally,it demonstrated excellent regeneration performance with 8 adsorption/desorption cycles.In addition,91.20%-94.16% of spiked diosmetin was recovered from the lemon peel samples.The strategy of constructing Diosmetin/SMIPs based on computational simulation can effectively enhance the specific adsorption performance of diosmetin.Meanwhile,Diosmetin/SMIPs synthesized by imprinting polymerization showed excellent anti-interference and reusability,and realized efficient targeted extraction of diosmetin from lemon peel samples.The results of this investigation provide a promising adsorbent for selective enrichment of diosmetin from Citrus fruit and complicated materials. 展开更多
关键词 Diosmetin Selective extraction Magnetic molecularly imprinted polymer Lemon peel
原文传递
Sulfur-Doped Carbonized Polymer Dots:A Biocompatible Photocatalyst for Rapid Aqueous PET-RAFT Polymerization 被引量:1
11
作者 Yue Yu Songyuan Tao +3 位作者 Qingsen Zeng Zhihui Ma Kai Zhang Bai Yang 《Carbon Energy》 2025年第3期186-195,共10页
To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoin... To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields. 展开更多
关键词 aqueous PET-RAFT polymerization carbonized polymer dots photocatalysis ultrahigh efficiency
在线阅读 下载PDF
Innovative Approaches in Water Decontamination: A Critical Analysis of Biomaterials, Nanocomposites, and Stimuli-Responsive Polymers for Effective Solutions 被引量:1
12
作者 Rakesh Namdeti Gaddala Babu Rao +5 位作者 Nageswara Rao Lakkimsetty Muayad Abdullah Ahmed Qatan Doaa Salim Musallam Samhan Al-Kathiri Lakhayar Amer Al Amri Noor Mohammed Said Qahoor Arlene Abuda Joaquin 《Journal of Environmental & Earth Sciences》 2025年第1期92-102,共11页
In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr... In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health. 展开更多
关键词 Smart Materials Water Purification NANOCOMPOSITES Stimuli-Responsive polymers Sustainable Water Treatment
在线阅读 下载PDF
Polymeric nanocarriers for therapeutic gene delivery 被引量:1
13
作者 Jiayuan Zhang Xinyu Yang +3 位作者 Zhichao Chang Wenwei Zhu Yuhua Ma Haisheng He 《Asian Journal of Pharmaceutical Sciences》 2025年第1期1-25,共25页
The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers... The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed.Beyond these vectors,polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities,such as improving the stability,cellar uptake and endosomal escape of nucleic acid drugs,along with precise delivery to targeted tissues.This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery,focusing on key cationic polymers,nanocarrier types,and preparation methods.It also highlights targeted diseases,strategies to improve delivery efficiency,and potential future directions in this research area.The review is hoped to inspire the development,optimization,and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery. 展开更多
关键词 polymeric nanocarriers Therapeutic gene delivery Cationic polymers DISEASES Transfection efficiency STRATEGIES
暂未订购
Development and evaluation of organic/metal ion double crosslinking polymer gel for anti-CO_(2)gas channeling in high temperature and low permeability reservoirs 被引量:2
14
作者 Hong-Bin Yang Hai-Zhuang Jiang +7 位作者 Zhe Xu Xing Zhang Tao Wang Hai-Ning Liu Xiao Ma Jian-Jun Zhu Xiang-Feng Zhang Wan-Li Kang 《Petroleum Science》 2025年第2期724-738,共15页
CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pe... CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field. 展开更多
关键词 High temperature and low permeability reservoir CO_(2)flooding Anti-gas channeling polymer gel
原文传递
An overview of polymer-based thermally conductive functional materials 被引量:1
15
作者 Zhaoyang Li Yu Sun +11 位作者 Feiyang Hu Di Liu Xiangping Zhang Juanna Ren Hua Guo Marwan Shalash Mukun He Hua Hou Salah MEl-Bahy Duo Pan Zeinhom MEl-Bahy Zhanhu Guo 《Journal of Materials Science & Technology》 2025年第15期191-210,共20页
With the continuous development of electronic devices and the information industry towards miniaturization,integration,and high-power consumption,the using of electronic devices will inevitably generate and accumulate... With the continuous development of electronic devices and the information industry towards miniaturization,integration,and high-power consumption,the using of electronic devices will inevitably generate and accumulate heat,which will cause local high temperatures and will seriously reduce their performance,reliability,and lifetime.Therefore,having efficient heat-conducting functional materials is crucial to the normal and stable operation of electrical equipment and microelectronic products.In view of the excellent comprehensive performance of polymer-based thermally conductive materials(including intrinsic polymers and filler-filled polymer-based composites),it has shown great advantages in thermal management applications.In this review,the research status of preparing polymer-based thermally conductive composites and effective strategies to improve their thermal conductivity(TC)are reviewed.Compared with the higher cost and technical support with adjusting the molecular chain structure and cross-linking mode to improve the intrinsic TC of the polymer,introducing suitable fillers into the polymer to build a thermally conductive network or oriented structure can simply and efficiently improve the overall TC.Typical applications of polymer-based composites were discussed with detailed examples in the field of electronic packaging.Challenges and possible solutions to solve the issues are discussed together with the perspectives.This study provides guidance for the future development of polymer-based thermally conductive composites. 展开更多
关键词 Thermal conductivity Intrinsic polymer polymer-based composite Thermally conductive filler Heat conduction path
原文传递
Application of a low-cost and high-efficiency polymer non-catalytic reduction technology for NO_(x) removal in waste-to-energy plant 被引量:1
16
作者 Shuai Xiao Congbo Li +4 位作者 Xueyan Zheng Liya Li Jingzhong Si Xiuqi Shu Xianqiong Zeng 《Journal of Environmental Sciences》 2025年第12期112-125,共14页
Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration eff... Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants. 展开更多
关键词 polymer non-catalytic reduction High denitration efficiency Low operating cost Waste-to-energy plant
原文传递
Zincophilic Cu/flexible polymer heterogeneous interfaces ensuring the stability of zinc metal anodes 被引量:1
17
作者 Luyang Sun Wenjia Zhang +4 位作者 Qiongqiong Lu Pengfei Yue Guoshang Zhang Kexing Song Yanqing Su 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1719-1729,共11页
Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side react... Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side reactions during zinc plating or stripping greatly reduce the capacity and cycle life of a battery and subsequently limit its practical application.To address these issues,we modified the surface of a zinc anode with a functional bilayer composed of zincophilic Cu and flexible polymer layers.The zincophilic Cu interfacial layer was prepared through CuSO_(4)solution pretreatment to serve as a nucleation site to facilitate uniform Zn deposition.Meanwhile,the polymer layer was coated onto the Cu interface layer to serve as a protective layer that would prevent side reactions between zinc and electrolytes.Benefiting from the synergistic effect of the zincophilic Cu and protective polymer layers,the symmetric battery exhibits an impressive cycle life,lasting over 2900 h at a current density of 1 m A·cm^(-2)with a capacity of 1 m A·h·cm^(-2).Moreover,a full battery paired with a vanadium oxide cathode achieves a remarkable capacity retention of 72%even after 500 cycles. 展开更多
关键词 aqueous zinc-ion batteries zinc metal anode zincophilic Cu polymer protective layer DENDRITE
在线阅读 下载PDF
Syntheses,characterization,and luminescence properties of Yb(Ⅲ)-based one-dimensional chain coordination polymer
18
作者 CHEN Wanting MIAO Chufei +4 位作者 LIU Yan ZHENG Bobi ZHENG Xiaoyu XU Han TIAN Jumei 《无机化学学报》 北大核心 2025年第8期1672-1680,共9页
One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,p... One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,powder X-ray diffraction,X-ray diffraction,and elemental analysis.Complex 1 displays a 1D chain structure,and belongs to P1 group.The solid-state luminescent spectrum of 1 showed an emission band with the maximum at 508 nm(λex=408 nm).It exhibited the emission characteristic of the H_(4)dhtp ligand.The fluorescence of 1 in water displayed the stron-gest intensity.In detecting various metal ions,adding Zr^(4+)led to a blue shift in fluorescence,accompanied by an increase in intensity,whereas the presence of Fe^(3+)resulted in a decrease in luminescence.The changes observed in the IR spectrum indicate an interaction between Fe^(3+)/Zr^(4+)and complex 1,resulting in the variation of luminescence properties. 展开更多
关键词 coordination polymers STRUCTURE LUMINESCENCE
在线阅读 下载PDF
White Light Emission Enhancement in Sm^(3+)-doped Lithium Aluminum Silicate Glasses by Ag Nanoparticles
19
作者 CHANG Yuanxing ZHANG Dandan +4 位作者 YIN Guanchao WANG Yesen WANG Mingzhong QIU Jianbei XU Yinsheng 《发光学报》 北大核心 2025年第7期1249-1261,共13页
Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cr... Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cross-sections of Sm^(3+)result in low luminous efficiency,posing challenges for achieving high-quality solid-state lighting.Here,the excellent white emission of Sm^(3+)doped lithium aluminum silicate(LAS)glass was realized by introducing the Ag aggregates through Ag ion exchange.Under 395 nm excitation,the Ag-doped samples exhibit significant fluo⁃rescence enhancement with color coordinates close to the equal energy white point E(0.33,0.33)and a color ren⁃dering index(CRI)of 81.8.The study reveals that the surface plasmon resonance(SPR)effect of Ag nanoparticles enhances the luminescence of Sm^(3+),while the energy transfer mechanism between Ag^(+)and Sm^(3+)also promotes fluores⁃cence enhancement.By adjusting the concentration of AgNO_(3) and the exchange time,a series of high-quality full-spectrum white light emissions were obtained,indicating that the Ag ion-exchanged Sm^(3+)-doped LAS glass has good application potential in the development of solid-state lighting devices.Moreover,variations in the excitation wave⁃length can effectively tune the emission color,further demonstrating the tunability and practicality of this material in optoelectronic applications. 展开更多
关键词 Ag NPs luminescent properties rare earth ions lithium aluminum silicate glass
在线阅读 下载PDF
Highly electrically conductive MOF/conducting polymer nanocomposites toward tunable electromagnetic wave absorption 被引量:1
20
作者 Xin Wu Peiyuan Kang +5 位作者 Yinghan Zhang Haocheng Guo Shuoying Yang Qi Zheng Lianjun Wang Wan Jiang 《Journal of Materials Science & Technology》 2025年第2期258-269,共12页
Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of h... Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of high-temperature treatments has introduced uncertainties regarding the compositions and microstructures of resulting derivatives.Additionally,complete carbonization has led to diminished yields of the produced carbon composites,significantly limiting their practical applications.Consequently,the exploration of pristine MOF-based EMW absorbers presents an intriguing yet challenging endeavor,primarily due to inherently low electrical conductivity.In this study,we showcase the utilization of structurally robust Zr-MOFs as scaffolds to build highly conductive Zr-MOF/PPy composites via an inner-outer dual-modification approach,which involves the production of conducting polypyrrole(PPy)both within the confined nanoporous channels and the external surface of Zr-MOFs via post-synthetic modification.The interconnection of confined PPy and surface-lined PPy together leads to a consecutive and extensive conducting network to the maximum extent.This therefore entails outstanding conductivity up to~14.3 S cm^(-1) in Zr-MOF/PPy composites,which is approximately 1-2 orders of magnitude higher than that for conductive MOF nanocomposites constructed from either inner or outer modification.Benefiting from the strong and tunable conduction loss,as well as the induced dielectric polarization originated from the porous structures and MOF-polymer interfaces,Zr-MOF/PPy exhibits excellent microwave attenuation capabilities and a tunable absorption frequency range.Specifically,with only 15 wt.%loading,the minimum reflection loss(RLmin)can reach up to-67.4 dB,accompanied by an effective absorption bandwidth(EAB)extending to 6.74 GHz.Furthermore,the microwave absorption characteristics can be tailored from the C-band to the Ku-band by adjusting the loading of PPy.This work provides valuable insights into the fabrication of conductive MOF composites by presenting a straightforward pathway to enhance and reg-ulate electrical conduction in MOF-based nanocomposites,thus paving a way to facilely fabricate pristine MOF-based microwave absorbers. 展开更多
关键词 Conductive mof nanocomposites Electromagnetic wave absorption MOF/conducting polymer Electrical conductivity Zr-MOF/PPy
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部