In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic...In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic silica (SiO2) nanoparticles onto the surface to improve anti-fouling performance. A range of testing techniques including attenuated total reflection Flourier transformed infrared spectroscopy(ATR-FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), water contact angle, mechanical test,filtration and anti-fouling performance were carried out to discuss the influence of different modification conditions on the properties of the membranes. The prepared hollow fiber membranes display the significantly excellent performance when the vinyl trimethoxy silane (VTMS) concentration was 13%, the pH value of the hydrolyzate was 4 and the hydrolysis reaction time was 6 h. In particular, the hydrophilicity of modified membranes was improved effectively, resulting in the enhancement of membrane anti-fouling properties. The results of this work can be consulted for improving the anti-fouling performance of the UHMWPE microfiltration hollow fiber membrane applied in the field of water purification.展开更多
Nano-Al2O3 particles modified Ag Cu Ni filler was adopted to braze the SiO2 ceramic and TC4.The effects of filler size as well as the brazing temperature on the interfacial microstructure and mechanical property of th...Nano-Al2O3 particles modified Ag Cu Ni filler was adopted to braze the SiO2 ceramic and TC4.The effects of filler size as well as the brazing temperature on the interfacial microstructure and mechanical property of the joints were investigated.Nanoscale filler reduced the phases dimension and promoted the homogeneous distribution of microstructure,obtaining a higher joint strength when compared to microscale filler.The increase of brazing temperature made the accelerating dissolution and diffusion of Ti,which promoted the increase of thickness of Ti4O7+TiSi2 layer adjacent to SiO2 ceramic and diffusion layer zone nearby TC4 alloy.The hypoeutectic structure was produced in the brazing seam due to the high Ti content.The maximum shear strength of^40 MPa was obtained at 950°C for 10 min.展开更多
Objective The effect of the silica nanoparticles(SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.Methods Male Wistar rats were instilled intratracheally with 1 ...Objective The effect of the silica nanoparticles(SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.Methods Male Wistar rats were instilled intratracheally with 1 mL of saline containing 6.25,12.5,and 25.0 mg of SNs or 25.0 mg of microscale SiO_2 particles suspensions for 30 d,were then sacrificed.Histopathological and ultrastructural change in lungs,and chemical components in the urine excretions were investigated by light microscope,TEM and EDS.MDA,NO and hydroxyproline(Hyp) in lung homogenates were quantified by spectrophotometry.Contents of TNF-α,TGF-β1,IL-1β,and MMP-2 in lung tissue were determined by immunohistochemistry staining.Results There is massive excretion of Si substance in urine.The SNs lead pulmonary lesions of rise in lung/body coefficients,lung inflammation,damaged alveoli,granuloma nodules formation,and collagen metabolized perturbation,and lung tissue damage is milder than those of microscale SiO_2 particles.The SNs also cause increase lipid peroxidation and high expression of cytokines.Conclusion The SNs result into pulmonary fibrosis by means of increase lipid peroxidation and high expression of cytokines.Milder effect of the SNs on pulmonary fibrosis comparing to microscale SiO_2 particles is contributed to its elimination from urine due to their ultrafine particle size.展开更多
Y2O2S:Yb/Ho-silica/aminosilane core-shell nanoparticles were prepared by a solid-gas method in combination with polyvinylpyr-rolidone assisted one-step ammoniating method. The core was a single Y2O2S:Yb/Ho with 80 nm ...Y2O2S:Yb/Ho-silica/aminosilane core-shell nanoparticles were prepared by a solid-gas method in combination with polyvinylpyr-rolidone assisted one-step ammoniating method. The core was a single Y2O2S:Yb/Ho with 80 nm in diameter and the shell was silica/aminosilane with around 5 nm in thickness. The results of sedimentation experiment indicated that the nanoparticles could be well-dispersed in ethanol and water to form stable colloids. Since the coating weakened lattice vibration energies of the Y2O2S:Yb/Ho...展开更多
A mixed system that includes poly(ethylene oxide) (PEO) and silica (SiO2) nanoparticles is prepared using two mixing methods. The interaction between PEO and the SiO2 nanoparticles in the dilute basic solution i...A mixed system that includes poly(ethylene oxide) (PEO) and silica (SiO2) nanoparticles is prepared using two mixing methods. The interaction between PEO and the SiO2 nanoparticles in the dilute basic solution is investigated using the dynamic tight scattering (DLS) and isothermal titration calorimetry (ITC) techniques. The DLS results show qualitatively that SiO2 nanoparticles interact with both random coils and aggregates of PEO through hydrogen bonding, and PEO-SiO2 complexes are formed. The degree of disaggregation of aggregates of PEO is readily adjusted by changing the concentration of SiO2 nanoparticle suspensions. Moreover, the ITC results also certify quantitatively the interaction between PEO and SiO2 nanoparticle, and give the evidence of formation of PEO-SiO2 complex.展开更多
Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially acces...Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially accessible internal spaces,and so forth.Dissimilar vip species(such as organic groups or metal nanoparticles)could be readily decorated onto the interfaces of the channels and pores,realizing the functionalization of dendritic mesoporous silica nanoparticles for targeted applications.As adsorbents and catalysts,dendritic mesoporous silica nanoparticles-based materials have experienced nonignorable development in CO_(2)capture and catalytic conversion.This comprehensive review provides a critical survey on this pregnant subject,summarizing the designed construction of novel dendritic mesoporous silica nanoparticles-based materials,the involved chemical reactions(such as CO_(2)methanation,dry reforming of CH_(4)),the value-added chemicals from CO_(2)(such as cyclic carbonates,2-oxazolidinones,quinazoline-2,4(1H,3H)-diones),and so on.The adsorptive and catalytic performances have been compared with traditional silica mesoporous materials(such as SBA-15 or MCM-41),and the corresponding reaction mechanisms have been thoroughly revealed.It is sincerely expected that the in-depth discussion could give materials scientists certain inspiration to design brand-new dendritic mesoporous silica nanoparticles-based materials with superior capabilities towards CO_(2)capture,utilization,and storage.展开更多
High quality Zn0.5CoxFe2.5−xO4(x=0,0.05,0.1,0.15)serial magnetic nanoparticles with single cubic structures were prepared by the modified thermal decomposition method,and Zn0.5CoxFe2.5−xO4/SiO2 composite magnetic nano...High quality Zn0.5CoxFe2.5−xO4(x=0,0.05,0.1,0.15)serial magnetic nanoparticles with single cubic structures were prepared by the modified thermal decomposition method,and Zn0.5CoxFe2.5−xO4/SiO2 composite magnetic nanoparticles were prepared by surface modification of SiO2.The magnetic anisotropy of the sample increases with the increase of the doping amount of Co2+.When the doping amount is 0.1,the sample shows the transition from superparamagnetism to ferrimagnetism at room temperature.In the Zn0.5CoxFe2.5−xO4/SiO2 serial samples,the maximum value of specific loss power(SLP)with 1974 W/gmetal can also be found at doping amount of x=0.1.The composite nanoparticles are expected to be an excellent candidate for clinical magnetic hyperthermia.展开更多
Rivers and aquifers are increasingly affected worldwide by the action of agro-industrial pollution. Facing this challenge, nanoparticles have found a wide range of applications in the decontamination and remediation o...Rivers and aquifers are increasingly affected worldwide by the action of agro-industrial pollution. Facing this challenge, nanoparticles have found a wide range of applications in the decontamination and remediation of water, given the characteristics which make them highly reactive to specific substances. One of the simplest ways of gaining access to these particles is through their synthesis over a sufficiently rigid matrix of manageable size. This report describes the synthesis and characterization of nanoparticles of iron and potassium diphosphate (KFeP2O7) synthesized on silica gel beads (SiO2). Analysis by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) have been applied in order to determine the mineral phases and morphology of the synthesized compounds. Complementary tests were conducted so as to determine surface characteristics such as specific area by the BET method and point of zero charge (pHpzc) by mass titration. The acid-base titration enabled to determine the adsorptive nature of nanoparticles and their response to a pH range from 1 to 12.展开更多
Background:Silica nanoparticles(SiNPs),commonly utilized in industrial and biomedical fields,are known to provoke pulmonary inflammation by elevating cyclooxygenase-2(COX-2)levels in human pulmonary alveolar epithelia...Background:Silica nanoparticles(SiNPs),commonly utilized in industrial and biomedical fields,are known to provoke pulmonary inflammation by elevating cyclooxygenase-2(COX-2)levels in human pulmonary alveolar epithelial cells(HPAEpiCs).Salvianolic acid A(SAA),a water-soluble polyphenol extracted from Salvia miltiorrhiza(Danshen),possesses well-documented antioxidant and anti-inflammatory activities.Nevertheless,its potential to counteract SiNP-induced inflammatory responses in the lung has not been thoroughly explored.Objective:This study aimed to evaluate the protective role and mechanistic actions of SAA against SiNP-triggered inflammation in both cellular and animal models.Methods:HPAEpiCs were pre-incubated with SAA prior to SiNP exposure to investigate changes in COX-2 expression and prostaglandin E2(PGE2)secretion.A murine model of SiNP-induced lung inflammation was used for in vivo validation.Key inflammatory signaling proteins,including c-Src,PKCα,p42/p44MAPK,and NF-κB p65,were analyzed for phosphorylation status.NF-κB promoter activity was also assessed.Pharmacological inhibitors and siRNA-mediated silencing were employed to verify the signaling cascade responsible for COX-2 regulation.Results:SAA treatment markedly suppressed SiNP-induced upregulation of COX-2 and PGE2 in bothHPAEpiCs andmouse lung tissues.SAA also reduced the activation(phosphorylation)of c-Src,PKCα,p42/p44 MAPK,and NF-κB p65,alongside diminishing NF-κB transcriptional activity.Functional studies using inhibitors and gene silencing further supported the involvement of these pathways inmediating the observed anti-inflammatory effect.Conclusion:By concurrently targeting several upstream pro-inflammatory signaling pathways,SAA demonstrates robust potential in alleviating SiNP-induced lung inflammation.These results highlight SAA as a promising candidate for therapeutic intervention in environmentally triggered respiratory conditions.展开更多
Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Si05 species containing surface. The as-prepared materials have been characterized by X-ray diffraction spectro...Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Si05 species containing surface. The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques. EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2SiO5, which is substantiated by XRD. The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica. FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework. SEM and TEM show the spherical morphology, whereas N2 adsorption/desorption study confirms the porosity of the prepared materials. The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa TiO2.展开更多
Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) c...Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.展开更多
Highly homogeneous, well dispersed SiO_2@Au@TiO_2(SAT) microspheres decorated with Au nanoparticles(AuNPs) were prepared and incorporated into the photoanode with an optimized concentration gradientascent. The effects...Highly homogeneous, well dispersed SiO_2@Au@TiO_2(SAT) microspheres decorated with Au nanoparticles(AuNPs) were prepared and incorporated into the photoanode with an optimized concentration gradientascent. The effects of SAT microspheres and the gradient-ascent architecture on the light absorption and the photoelectric conversion efficiency(PCE) of the dye-sensitized solar cells(DSSCs) were investigated.Studies indicate that the introduction of SAT microspheres and the gradient-ascent architecture in the photoanode significantly enhance the light scattering and harvesting capability of the photoanode. The DSSC with the optimized SAT gradient-ascent photoanode has the maximum short circuit current density(J_(sc)) of 17.7 mA cm^(-2) and PCE of 7.75%, remarkably higher than those of the conventional DSSC by 23.7%and 28.0%, respectively. This significantly enhancement of the performance of the DSSC can be attributed to the excellent light reflection/scattering of SAT, the localized surface plasma resonance(LSPR) effect of AuNPs within the microspheres, and the gradient-ascent architecture of SAT microspheres inside the photoanode. This study demonstrates that the tri-synergies of the scattering of SAT microspheres, the LSPR of AuNPs and the gradient-ascent architecture can effectively improve the PCE of DSSC.展开更多
We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monit...We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monitor the reaction process of the formation of Ag on the surfaces of silica beads,and the optical resonance of the substrate could shift from visible to NIR region.It has been found that surface-enhanced Raman scattering(SERS) enhancement changes with the electroless plating time and the SSCS substrate with the plating time of 90 s(90SSCS) shows the strongest SERS response under the laser excitation at 514.5 nm.Signals collected over multiple spots and substrate of rhodamine 6G(R6G) resulted in a relative standard deviation(RSD) of 9.75%.The calculated enhancement factor(EF) was approximately 105 "106.SSCS substrate exhibits high SERS performance,which is due to electromagnetic SERS enhancement with additional localization field within closely packed Ag nanoparticles decorated on the SiO2 nanoparticles.And this substrate presents tunable and broad localized surface plasmon resonance(LSPR),so this method may open a new way for SERS studies with other laser excitation.展开更多
Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carri...Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.展开更多
A novel method avoiding the complex transfer process is proposed to directly grow low-defect and few-layer graphene on different insulating substrates(SiO2, Al2O3, etc.) by remote catalyzation of Cu nanoparticles(...A novel method avoiding the complex transfer process is proposed to directly grow low-defect and few-layer graphene on different insulating substrates(SiO2, Al2O3, etc.) by remote catalyzation of Cu nanoparticles(NPs) using ambient pressure chemical vapor deposition(APCVD). The insulating substrates with special structure are used as templates to grow wrapped graphene sheets with special shapes.Hollow graphene species are obtained by removing the substrates. The prime feature of the proposed method is using Cu NPs as catalyst rather than metal foils. The Cu NPs play an important role in the remote catalyzation during the nucleation of graphene. This method can improve the quality and relatively decrease the growth temperature of the graphene on the insulating substrates, which displays the great potential of APCVD direct growth of graphene on dielectric substrates for electronic and photovoltaic applications.展开更多
Tetrathiafulvalene(TTF) was doped in an SiO2 network and the resulting nanocompesite was used as a mediator for the selective detection of glucose. The uniform TTF-doped silica(TIT@SiO2 ) nanoparticles were prepar...Tetrathiafulvalene(TTF) was doped in an SiO2 network and the resulting nanocompesite was used as a mediator for the selective detection of glucose. The uniform TTF-doped silica(TIT@SiO2 ) nanoparticles were prepared by the water-in-oil(W/O) microemulsion method, and were characterized by transmission electron microscopy(TEM). The core-shell structure TTF@ SiO2 could prevent TIT from leaching out into an aqueous solution. Combined with chitosan (CHIT), which serves as a scaffold for glucose oxidase and nanocomposite immobilization, the GCE/TTF@ SiO2- CHIT-GOx biosensor was developed. Under optimal conditions, the biosensors exhibit a linear range of 1.0 × 10^-5 5 × 10^-3 mol/L with a detection limit down to 5.0 μmol/L(S/N = 3 ). The excellent selectivity, sensitivity, and stability of the glucose biosensor show its potential for practical applications.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51473031)Shanghai International S&T Cooperation Fund (No. 16160731302)。
文摘In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic silica (SiO2) nanoparticles onto the surface to improve anti-fouling performance. A range of testing techniques including attenuated total reflection Flourier transformed infrared spectroscopy(ATR-FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), water contact angle, mechanical test,filtration and anti-fouling performance were carried out to discuss the influence of different modification conditions on the properties of the membranes. The prepared hollow fiber membranes display the significantly excellent performance when the vinyl trimethoxy silane (VTMS) concentration was 13%, the pH value of the hydrolyzate was 4 and the hydrolysis reaction time was 6 h. In particular, the hydrophilicity of modified membranes was improved effectively, resulting in the enhancement of membrane anti-fouling properties. The results of this work can be consulted for improving the anti-fouling performance of the UHMWPE microfiltration hollow fiber membrane applied in the field of water purification.
基金supported by National Natural Science Foundation of China(Grant Nos.51505105,51875130 and 51775138)the Key Research&Development Program of Shandong Province(No.2017GGX40103).
文摘Nano-Al2O3 particles modified Ag Cu Ni filler was adopted to braze the SiO2 ceramic and TC4.The effects of filler size as well as the brazing temperature on the interfacial microstructure and mechanical property of the joints were investigated.Nanoscale filler reduced the phases dimension and promoted the homogeneous distribution of microstructure,obtaining a higher joint strength when compared to microscale filler.The increase of brazing temperature made the accelerating dissolution and diffusion of Ti,which promoted the increase of thickness of Ti4O7+TiSi2 layer adjacent to SiO2 ceramic and diffusion layer zone nearby TC4 alloy.The hypoeutectic structure was produced in the brazing seam due to the high Ti content.The maximum shear strength of^40 MPa was obtained at 950°C for 10 min.
基金supported by the National Natural Science Foundation of China(Grant No.81273046)the Fundamental Research Funds for the Central Universitiesthe Preventive Medicine Research Projects of Jiangsu Province(Grant No.Y2012039)
文摘Objective The effect of the silica nanoparticles(SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.Methods Male Wistar rats were instilled intratracheally with 1 mL of saline containing 6.25,12.5,and 25.0 mg of SNs or 25.0 mg of microscale SiO_2 particles suspensions for 30 d,were then sacrificed.Histopathological and ultrastructural change in lungs,and chemical components in the urine excretions were investigated by light microscope,TEM and EDS.MDA,NO and hydroxyproline(Hyp) in lung homogenates were quantified by spectrophotometry.Contents of TNF-α,TGF-β1,IL-1β,and MMP-2 in lung tissue were determined by immunohistochemistry staining.Results There is massive excretion of Si substance in urine.The SNs lead pulmonary lesions of rise in lung/body coefficients,lung inflammation,damaged alveoli,granuloma nodules formation,and collagen metabolized perturbation,and lung tissue damage is milder than those of microscale SiO_2 particles.The SNs also cause increase lipid peroxidation and high expression of cytokines.Conclusion The SNs result into pulmonary fibrosis by means of increase lipid peroxidation and high expression of cytokines.Milder effect of the SNs on pulmonary fibrosis comparing to microscale SiO_2 particles is contributed to its elimination from urine due to their ultrafine particle size.
基金Project supported by the National Natural Science Foundation of China (60979003 and 20977012)
文摘Y2O2S:Yb/Ho-silica/aminosilane core-shell nanoparticles were prepared by a solid-gas method in combination with polyvinylpyr-rolidone assisted one-step ammoniating method. The core was a single Y2O2S:Yb/Ho with 80 nm in diameter and the shell was silica/aminosilane with around 5 nm in thickness. The results of sedimentation experiment indicated that the nanoparticles could be well-dispersed in ethanol and water to form stable colloids. Since the coating weakened lattice vibration energies of the Y2O2S:Yb/Ho...
基金supported by the National Natural Science Foundation of China (Nos: 50621302, 50921062)
文摘A mixed system that includes poly(ethylene oxide) (PEO) and silica (SiO2) nanoparticles is prepared using two mixing methods. The interaction between PEO and the SiO2 nanoparticles in the dilute basic solution is investigated using the dynamic tight scattering (DLS) and isothermal titration calorimetry (ITC) techniques. The DLS results show qualitatively that SiO2 nanoparticles interact with both random coils and aggregates of PEO through hydrogen bonding, and PEO-SiO2 complexes are formed. The degree of disaggregation of aggregates of PEO is readily adjusted by changing the concentration of SiO2 nanoparticle suspensions. Moreover, the ITC results also certify quantitatively the interaction between PEO and SiO2 nanoparticle, and give the evidence of formation of PEO-SiO2 complex.
基金supported by the National Key R&D program of China(2019YFA0706802)National Natural Science Foundation of China(52063029)+2 种基金Natural Science Basic Research Program of Shaanxi(2022JM-200,2021JQ-716)China Postdoctoral Science Foundation(2020M672269)Doctoral Research Program of Yan’an University(YDBK2019-02)
文摘Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially accessible internal spaces,and so forth.Dissimilar vip species(such as organic groups or metal nanoparticles)could be readily decorated onto the interfaces of the channels and pores,realizing the functionalization of dendritic mesoporous silica nanoparticles for targeted applications.As adsorbents and catalysts,dendritic mesoporous silica nanoparticles-based materials have experienced nonignorable development in CO_(2)capture and catalytic conversion.This comprehensive review provides a critical survey on this pregnant subject,summarizing the designed construction of novel dendritic mesoporous silica nanoparticles-based materials,the involved chemical reactions(such as CO_(2)methanation,dry reforming of CH_(4)),the value-added chemicals from CO_(2)(such as cyclic carbonates,2-oxazolidinones,quinazoline-2,4(1H,3H)-diones),and so on.The adsorptive and catalytic performances have been compared with traditional silica mesoporous materials(such as SBA-15 or MCM-41),and the corresponding reaction mechanisms have been thoroughly revealed.It is sincerely expected that the in-depth discussion could give materials scientists certain inspiration to design brand-new dendritic mesoporous silica nanoparticles-based materials with superior capabilities towards CO_(2)capture,utilization,and storage.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51771124,51571146,and 51701130)。
文摘High quality Zn0.5CoxFe2.5−xO4(x=0,0.05,0.1,0.15)serial magnetic nanoparticles with single cubic structures were prepared by the modified thermal decomposition method,and Zn0.5CoxFe2.5−xO4/SiO2 composite magnetic nanoparticles were prepared by surface modification of SiO2.The magnetic anisotropy of the sample increases with the increase of the doping amount of Co2+.When the doping amount is 0.1,the sample shows the transition from superparamagnetism to ferrimagnetism at room temperature.In the Zn0.5CoxFe2.5−xO4/SiO2 serial samples,the maximum value of specific loss power(SLP)with 1974 W/gmetal can also be found at doping amount of x=0.1.The composite nanoparticles are expected to be an excellent candidate for clinical magnetic hyperthermia.
基金This study was conducted as part of the project CB 907 of ININ.
文摘Rivers and aquifers are increasingly affected worldwide by the action of agro-industrial pollution. Facing this challenge, nanoparticles have found a wide range of applications in the decontamination and remediation of water, given the characteristics which make them highly reactive to specific substances. One of the simplest ways of gaining access to these particles is through their synthesis over a sufficiently rigid matrix of manageable size. This report describes the synthesis and characterization of nanoparticles of iron and potassium diphosphate (KFeP2O7) synthesized on silica gel beads (SiO2). Analysis by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) have been applied in order to determine the mineral phases and morphology of the synthesized compounds. Complementary tests were conducted so as to determine surface characteristics such as specific area by the BET method and point of zero charge (pHpzc) by mass titration. The acid-base titration enabled to determine the adsorptive nature of nanoparticles and their response to a pH range from 1 to 12.
基金supported by the National Science and Technology Council,Taiwan[Grant number:NSTC111-2320-B-030-013]as well as the Chang Gung University of Science Foundation,Taiwan[Grant number:ZRRPF6N0011].
文摘Background:Silica nanoparticles(SiNPs),commonly utilized in industrial and biomedical fields,are known to provoke pulmonary inflammation by elevating cyclooxygenase-2(COX-2)levels in human pulmonary alveolar epithelial cells(HPAEpiCs).Salvianolic acid A(SAA),a water-soluble polyphenol extracted from Salvia miltiorrhiza(Danshen),possesses well-documented antioxidant and anti-inflammatory activities.Nevertheless,its potential to counteract SiNP-induced inflammatory responses in the lung has not been thoroughly explored.Objective:This study aimed to evaluate the protective role and mechanistic actions of SAA against SiNP-triggered inflammation in both cellular and animal models.Methods:HPAEpiCs were pre-incubated with SAA prior to SiNP exposure to investigate changes in COX-2 expression and prostaglandin E2(PGE2)secretion.A murine model of SiNP-induced lung inflammation was used for in vivo validation.Key inflammatory signaling proteins,including c-Src,PKCα,p42/p44MAPK,and NF-κB p65,were analyzed for phosphorylation status.NF-κB promoter activity was also assessed.Pharmacological inhibitors and siRNA-mediated silencing were employed to verify the signaling cascade responsible for COX-2 regulation.Results:SAA treatment markedly suppressed SiNP-induced upregulation of COX-2 and PGE2 in bothHPAEpiCs andmouse lung tissues.SAA also reduced the activation(phosphorylation)of c-Src,PKCα,p42/p44 MAPK,and NF-κB p65,alongside diminishing NF-κB transcriptional activity.Functional studies using inhibitors and gene silencing further supported the involvement of these pathways inmediating the observed anti-inflammatory effect.Conclusion:By concurrently targeting several upstream pro-inflammatory signaling pathways,SAA demonstrates robust potential in alleviating SiNP-induced lung inflammation.These results highlight SAA as a promising candidate for therapeutic intervention in environmentally triggered respiratory conditions.
基金PAKR and MS thank CSIR,New Delhi for funding this work under Emeritus Scientist Scheme
文摘Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Si05 species containing surface. The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques. EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2SiO5, which is substantiated by XRD. The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica. FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework. SEM and TEM show the spherical morphology, whereas N2 adsorption/desorption study confirms the porosity of the prepared materials. The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa TiO2.
基金Supported by the National Natural Science Foundation of China(20876145) the Natural Science Foundation of Zhejiang Province(Y4080329)
文摘Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.
基金supported financially by the National Natural Science Foundation of China (Nos.51572102,11504101,11604089 and 11364018)
文摘Highly homogeneous, well dispersed SiO_2@Au@TiO_2(SAT) microspheres decorated with Au nanoparticles(AuNPs) were prepared and incorporated into the photoanode with an optimized concentration gradientascent. The effects of SAT microspheres and the gradient-ascent architecture on the light absorption and the photoelectric conversion efficiency(PCE) of the dye-sensitized solar cells(DSSCs) were investigated.Studies indicate that the introduction of SAT microspheres and the gradient-ascent architecture in the photoanode significantly enhance the light scattering and harvesting capability of the photoanode. The DSSC with the optimized SAT gradient-ascent photoanode has the maximum short circuit current density(J_(sc)) of 17.7 mA cm^(-2) and PCE of 7.75%, remarkably higher than those of the conventional DSSC by 23.7%and 28.0%, respectively. This significantly enhancement of the performance of the DSSC can be attributed to the excellent light reflection/scattering of SAT, the localized surface plasma resonance(LSPR) effect of AuNPs within the microspheres, and the gradient-ascent architecture of SAT microspheres inside the photoanode. This study demonstrates that the tri-synergies of the scattering of SAT microspheres, the LSPR of AuNPs and the gradient-ascent architecture can effectively improve the PCE of DSSC.
基金Supported by the National Natural Science Foundation of China(Nos.20873050,20921003,20973074,20903044)the "111" Project(No.B06009)the Key Projects in the National Science & Technology Pillar Program,China(No.2007BAI38B03)
文摘We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monitor the reaction process of the formation of Ag on the surfaces of silica beads,and the optical resonance of the substrate could shift from visible to NIR region.It has been found that surface-enhanced Raman scattering(SERS) enhancement changes with the electroless plating time and the SSCS substrate with the plating time of 90 s(90SSCS) shows the strongest SERS response under the laser excitation at 514.5 nm.Signals collected over multiple spots and substrate of rhodamine 6G(R6G) resulted in a relative standard deviation(RSD) of 9.75%.The calculated enhancement factor(EF) was approximately 105 "106.SSCS substrate exhibits high SERS performance,which is due to electromagnetic SERS enhancement with additional localization field within closely packed Ag nanoparticles decorated on the SiO2 nanoparticles.And this substrate presents tunable and broad localized surface plasmon resonance(LSPR),so this method may open a new way for SERS studies with other laser excitation.
基金E.L.,K.L.,P.W.,and S.T.are supported by the SCCER-Heat and Energy Storage program
文摘Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.
基金financial support from National Natural Science Foundation of China (No. 61205177)Shanghai Science and Technology Committee Grants (Nos. 13JC1405700, 11JC1403400 and 08JC1408600)
文摘A novel method avoiding the complex transfer process is proposed to directly grow low-defect and few-layer graphene on different insulating substrates(SiO2, Al2O3, etc.) by remote catalyzation of Cu nanoparticles(NPs) using ambient pressure chemical vapor deposition(APCVD). The insulating substrates with special structure are used as templates to grow wrapped graphene sheets with special shapes.Hollow graphene species are obtained by removing the substrates. The prime feature of the proposed method is using Cu NPs as catalyst rather than metal foils. The Cu NPs play an important role in the remote catalyzation during the nucleation of graphene. This method can improve the quality and relatively decrease the growth temperature of the graphene on the insulating substrates, which displays the great potential of APCVD direct growth of graphene on dielectric substrates for electronic and photovoltaic applications.
基金Supported by the National Natural Science Foundation of China(No. 20305007) and Doctoral Foundation of China Ministry ofEducation(No. 20030269014)
文摘Tetrathiafulvalene(TTF) was doped in an SiO2 network and the resulting nanocompesite was used as a mediator for the selective detection of glucose. The uniform TTF-doped silica(TIT@SiO2 ) nanoparticles were prepared by the water-in-oil(W/O) microemulsion method, and were characterized by transmission electron microscopy(TEM). The core-shell structure TTF@ SiO2 could prevent TIT from leaching out into an aqueous solution. Combined with chitosan (CHIT), which serves as a scaffold for glucose oxidase and nanocomposite immobilization, the GCE/TTF@ SiO2- CHIT-GOx biosensor was developed. Under optimal conditions, the biosensors exhibit a linear range of 1.0 × 10^-5 5 × 10^-3 mol/L with a detection limit down to 5.0 μmol/L(S/N = 3 ). The excellent selectivity, sensitivity, and stability of the glucose biosensor show its potential for practical applications.