期刊文献+
共找到8,040篇文章
< 1 2 250 >
每页显示 20 50 100
A Review of Deep Learning for Biomedical Signals:Current Applications,Advancements,Future Prospects,Interpretation,and Challenges
1
作者 Ali Mohammad Alqudah Zahra Moussavi 《Computers, Materials & Continua》 2025年第6期3753-3841,共89页
This reviewpresents a comprehensive technical analysis of deep learning(DL)methodologies in biomedical signal processing,focusing on architectural innovations,experimental validation,and evaluation frameworks.We syste... This reviewpresents a comprehensive technical analysis of deep learning(DL)methodologies in biomedical signal processing,focusing on architectural innovations,experimental validation,and evaluation frameworks.We systematically evaluate key deep learning architectures including convolutional neural networks(CNNs),recurrent neural networks(RNNs),transformer-based models,and hybrid systems across critical tasks such as arrhythmia classification,seizure detection,and anomaly segmentation.The study dissects preprocessing techniques(e.g.,wavelet denoising,spectral normalization)and feature extraction strategies(time-frequency analysis,attention mechanisms),demonstrating their impact on model accuracy,noise robustness,and computational efficiency.Experimental results underscore the superiority of deep learning over traditional methods,particularly in automated feature extraction,real-time processing,cross-modal generalization,and achieving up to a 15%increase in classification accuracy and enhanced noise resilience across electrocardiogram(ECG),electroencephalogram(EEG),and electromyogram(EMG)signals.Performance is rigorously benchmarked using precision,recall,F1-scores,area under the receiver operating characteristic curve(AUC-ROC),and computational complexitymetrics,providing a unified framework for comparing model efficacy.Thesurvey addresses persistent challenges:synthetic data generationmitigates limited training samples,interpretability tools(e.g.,Gradient-weighted Class Activation Mapping(Grad-CAM),Shapley values)resolve model opacity,and federated learning ensures privacy-compliant deployments.Distinguished from prior reviews,this work offers a structured taxonomy of deep learning architectures,integrates emerging paradigms like transformers and domain-specific attention mechanisms,and evaluates preprocessing pipelines for spectral-temporal trade-offs.It advances the field by bridging technical advancements with clinical needs,such as scalability in real-world settings(e.g.,wearable devices)and regulatory alignment with theHealth Insurance Portability and Accountability Act(HIPAA)and General Data Protection Regulation(GDPR).By synthesizing technical rigor,ethical considerations,and actionable guidelines for model selection,this survey establishes a holistic reference for developing robust,interpretable biomedical artificial intelligence(AI)systems,accelerating their translation into personalized and equitable healthcare solutions. 展开更多
关键词 Deep learning deep models biomedical signals physiological signals biosignals
在线阅读 下载PDF
Dynamics of inflammatory signals within the tumor microenvironment 被引量:1
2
作者 Hala Issa Lokjan Singh +2 位作者 Kok-Song Lai Tina Parusheva-Borsitzky Shamshul Ansari 《World Journal of Experimental Medicine》 2025年第2期24-39,共16页
Tumor stroma,or tumor microenvironment(TME),has been in the spotlight during recent years for its role in tumor development,growth,and metastasis.It consists of a myriad of elements,including tumor-associated macropha... Tumor stroma,or tumor microenvironment(TME),has been in the spotlight during recent years for its role in tumor development,growth,and metastasis.It consists of a myriad of elements,including tumor-associated macrophages,cancer-associated fibroblasts,a deregulated extracellular matrix,endothelial cells,and vascular vessels.The release of proinflammatory molecules,due to the inflamed microenvironment,such as cytokines and chemokines is found to play a pivotal role in progression of cancer and response to therapy.This review discusses the major key players and important chemical inflammatory signals released in the TME.Furthermore,the latest breakthroughs in cytokine-mediated crosstalk between immune cells and cancer cells have been highlighted.In addition,recent updates on alterations in cytokine signaling between chronic inflammation and malignant TME have also been reviewed. 展开更多
关键词 Inflammatory signals Tumor microenvironment CYTOKINES INTERLEUKINS Transforming growth factor
暂未订购
Quantum Genetic Algorithm Based Ensemble Learning for Detection of Atrial Fibrillation Using ECG Signals
3
作者 Yazeed Alkhrijah Marwa Fahim +4 位作者 Syed Muhammad Usman Qasim Mehmood Shehzad Khalid Mohamad A.Alawad Haya Aldossary 《Computer Modeling in Engineering & Sciences》 2025年第11期2339-2355,共17页
Atrial Fibrillation(AF)is a cardiac disorder characterized by irregular heart rhythms,typically diagnosed using Electrocardiogram(ECG)signals.In remote regions with limited healthcare personnel,automated AF detection ... Atrial Fibrillation(AF)is a cardiac disorder characterized by irregular heart rhythms,typically diagnosed using Electrocardiogram(ECG)signals.In remote regions with limited healthcare personnel,automated AF detection is extremely important.Although recent studies have explored various machine learning and deep learning approaches,challenges such as signal noise and subtle variations between AF and other cardiac rhythms continue to hinder accurate classification.In this study,we propose a novel framework that integrates robust preprocessing,comprehensive feature extraction,and an ensemble classification strategy.In the first step,ECG signals are divided into equal-sized segments using a 5-s sliding window with 50%overlap,followed by bandpass filtering between 0.5 and 45 Hz for noise removal.After preprocessing,both time and frequency-domain features are extracted,and a custom one-dimensional Convolutional Neural Network—Bidirectional Long Short-Term Memory(1D CNN-BiLSTM)architecture is introduced.Handcrafted and automated features are concatenated into a unified feature vector and classified using Support Vector Machine(SVM),Random Forest(RF),and Long Short-Term Memory(LSTM)models.A Quantum Genetic Algorithm(QGA)optimizes weighted averages of the classifier outputs for multi-class classification,distinguishing among AF,noisy,normal,and other rhythms.Evaluated on the PhysioNet 2017 Cardiology Challenge dataset,the proposed method achieved an accuracy of 94.40%and an F1-score of 92.30%,outperforming several state-of-the-art techniques. 展开更多
关键词 Quantum genetic algorithm AF detection heart disease ECG signals CNN LSTM
在线阅读 下载PDF
Space-Borne Interferometers to Detect Thousands of Memory Signals Emitted by Stellar-Mass Binary Black Holes
4
作者 Shaoqi Hou Zhi-Chao Zhao +1 位作者 Zhoujian Cao Zong-Hong Zhu 《Chinese Physics Letters》 2025年第10期323-330,共8页
The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory si... The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory signals from stellar-mass binary black holes(BBHs),typically targeted by ground-based detectors.We use DECIGO detector as an example.Over 5 years,DECIGO is estimated to detect approximately 2,036 memory signals(SNRs>3)from stellar-mass BBHs.Simulations used frequency-domain memory waveforms for direct SNR estimation.Predictions utilized a GWTC-3 constrained BBH population model(Power law+Peak mass,DEFAULT spin,Madau-Dickinson merger rate).The analysis used conservative lower merger rate limits and considered orbital eccentricity.The high detection rate stems from strong memory signals within DECIGO’s bandwidth and the abundance of stellar-mass BBHs.This substantial and conservative detection count enables statistical use of the memory effect for fundamental physics and astrophysics.DECIGO exemplifies that space interferometers may better detect memory signals from smaller mass binaries than their typical targets.Detectors in lower frequency bands are expected to find strong memory signals from∼10^(4)M⊙binaries. 展开更多
关键词 space borne interferometer detect memory signals gravitational memory effect decigo detector binary black holes bbhs typically stellar mass binary black holes signal noise ratio
原文传递
DOA estimation of non-cooperative UAV beam signals based on BD-DOANet
5
作者 Xieda SONG Guoru DING +3 位作者 Haichao WANG Jiangchun GU Peng TANG Yitao XU 《Chinese Journal of Aeronautics》 2025年第12期325-336,共12页
In recent years,the proliferation of beamforming signals has made the electromagnetic environment more complex.Traditional spectrum sensing techniques mainly focus on the detection of omnidirectional signals and can n... In recent years,the proliferation of beamforming signals has made the electromagnetic environment more complex.Traditional spectrum sensing techniques mainly focus on the detection of omnidirectional signals and can no longer meet the needs of beamforming signals.Moreover,the next-generation spectrum sensing technologies must not only reliably detect the presence of beamforming signals but also accurately estimate the spatial information of these signals.This paper investigates the issue of Direction of Arrival(DOA)of non-cooperative Unmanned Aerial Vehicle(UAV)beamforming signals,where most of the prior information about non-cooperative transmitters,such as the transmission power and the communication time slots,is unknown.In such conditions,we consider two types of data models for UAV beamforming signals with different Signalto-Noise Ratios(SNRs).Based on these data models,we develop a UAV Beamforming signals Detection-DOA Network(BD-DOANet),comprising convolutional modules,a channel attention module,and residual modules.Simulation results show that BD-DOANet effectively captures the angle information of non-cooperative UAV beamforming signals for both ideal and non-ideal data.At higher SNR levels,the average error is below 0.5 and its mean squared error is below 0.2.Even at lower SNR levels,BD-DOANet shows superior performance of DOA estimation. 展开更多
关键词 BD-DOANet Beam signals Deep learning Direction of arrival estimation Unmanned aerial vehicle
原文传递
Comparing different segments in shut-in pressure signals:New insights into frequency range and energy distribution
6
作者 Ya-Jing Wang Xiao-Dong Hu +5 位作者 Fu-Jian Zhou Pu-Kang Yi Wei-Peng Guan Yang Qiu En-Jia Dong Peng-Tian Zhang 《Petroleum Science》 2025年第1期442-456,共15页
Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pre... Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pressure signal. The field-sampled water hammer signal is often disturbed by noise interference. Noise interference exists in various pumping stages during water hammer diagnostics, with significantly different frequency range and energy distribution. Clarifying the differences in frequency range and energy distribution between effective water hammer signals and noise is the basis of setting specific filtering parameters, including filtering frequency range and energy thresholds. Filtering specifically could separate the effective signal and noise, which is the key to ensuring the accuracy of water hammer diagnosis. As an emerging technique, there is a lack of research on the frequency range and energy distribution of effective signals in water hammer diagnostics. In this paper, the frequency range and energy distribution characteristics of field-sampled water hammer signals were clarified quantitatively and qualitatively for the first time by a newly proposed comprehensive water hammer segmentation-energy analysis method. The water hammer signals were preprocessed and divided into three segments, including pre-shut-in, water hammer oscillation, and leak-off segment. Then, the three segments were analyzed by energy analysis and correlation analysis. The results indicated that, one aspect, the frequency range of water hammer oscillation spans from 0 to 0.65 Hz, considered as effective water hammer signal. The pre-shut-in and leak-off segment ranges from 0 to 0.35 Hz and 0-0.2 Hz respectively. Meanwhile, odd harmonics were manifested in water hammer oscillation segment, with the harmonic frequencies ranging approximately from 0.07 to 0.75 Hz. Whereas integer harmonics were observed in pre-shut-in segment, ranging from 6 to 40 Hz. The other aspect, the energy distribution of water hammer signals was analyzed in different frequency ranges. In 0-1 Hz, an exponential decay was observed in all three segments. In 1-100 Hz, a periodical energy distribution was observed in pre-shut-in segment, an exponential decay was observed in water hammer oscillation, and an even energy distribution was observed in leak-off segment. In 100-500 Hz, an even energy distribution was observed in those three segments, yet the highest magnitude was noted in leak-off segment. In this study, the effective frequency range and energy distribution characteristics of the field-sampled water hammer signals in different segments were sufficiently elucidated quantitatively and qualitatively for the first time, laying the groundwork for optimizing the filtering parameters of the field filtering models and advancing the accuracy of identifying downhole event locations. 展开更多
关键词 Hydraulic fracturing Fracture diagnostics Water hammer Energy spectral density analysis Segmentation analysis of pressure signals Frequency range Energy distribution
原文传递
Sparse Recovery of Decaying Signals by the Piecewise Generalized Orthogonal Matching Pursuit Algorithm
7
作者 Hanbing LIU Chongjun LI 《Journal of Mathematical Research with Applications》 2025年第6期813-834,共22页
In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Gen... In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Generalized Orthogonal Matching Pursuit(GOMP)algorithms for solving this problem,we propose the Piecewise Generalized Orthogonal Matching Pursuit(PGOMP)algorithm,by considering the mixed-decaying sparse signals as piecewise sparse signals with two components containing nonzero entries with different decay factors.The algorithm incorporates piecewise selection and deletion to retain the most significant entries according to the sparsity of each component.We provide a theoretical analysis based on the mutual coherence of the measurement matrix and the decay factors of the nonzero entries,establishing a sufficient condition for the PGOMP algorithm to select at least two correct indices in each iteration.Numerical simulations and an image decomposition experiment demonstrate that the proposed algorithm significantly improves the support recovery probability by effectively matching piecewise sparsity with decay factors. 展开更多
关键词 piecewise sparse recovery decaying sparse signals mutual coherence greedy algorithm
原文传递
Artifi cial intelligence method for automatic classifi cation of vibration signals in the mining process
8
作者 Rui Dai Jie Shao +2 位作者 Da Zhang Hu Ji Yi Zeng 《Applied Geophysics》 2025年第2期354-364,556,557,共13页
The increasing risk of ground pressure disasters resulting from deep well mining highlights the urgent need for advanced monitoring and early warning systems.Ground pressure monitoring,supported by microseismic techno... The increasing risk of ground pressure disasters resulting from deep well mining highlights the urgent need for advanced monitoring and early warning systems.Ground pressure monitoring,supported by microseismic technology,plays a pivotal role in ensuring mine safety by enabling real-time identifi cation and accurate classification of vibration signals such as microseismic signals,blasting signals,and noise.These classifications are critical for improving the efficacy of ground pressure monitoring systems,conducting stability analyses of deep rock masses,and implementing timely and precise roadway support measures.Such eff orts are essential for mitigating ground pressure disasters and ensuring safe mining operations.This study proposes an artificial intelligence-based automatic classification network model for mine vibration signals.Based on conventional convolutional neural networks,the proposed model further incorporates long short-term memory(LSTM)networks and attention mechanisms.The LSTM component eff ectively captures temporal correlations in time-series mining vibration data,while the attention mechanism enhances the models’ability to focus on critical features within the data.To validate the eff ectiveness of our proposed model,a dataset comprising 480,526 waveform records collected in 2022 by the microseismic monitoring system at Guangxi Shanhu Tungsten Mine was used for training,validation,and testing purposes.Results demonstrate that the proposed artifi cial intelligence-based classifi cation method achieves a higher recognition accuracy of 92.21%,significantly outperforming traditional manual classification methods.The proposed model represents a signifi cant advancement in ground pressure monitoring and disaster mitigation. 展开更多
关键词 deep mining microseismic monitoring classifi cation of mine vibration signals long short-term memory attention mechanism
在线阅读 下载PDF
Detection and interpretation of the time-varying seasonal signals in China with multi-geodetic measurements
9
作者 Liansheng Deng Yugang Xiao +4 位作者 Qusen Chen Wei Peng Zhao Li Hua Chen Zhiwen Wu 《Geodesy and Geodynamics》 2025年第1期42-54,共13页
The time-varying periodic variations in Global Navigation Satellite System(GNSS)stations affect the reliable time series analysis and appropriate geophysical interpretation.In this study,we apply the singular spectrum... The time-varying periodic variations in Global Navigation Satellite System(GNSS)stations affect the reliable time series analysis and appropriate geophysical interpretation.In this study,we apply the singular spectrum analysis(SSA)method to characterize and interpret the periodic patterns of GNSS deformations in China using multiple geodetic datasets.These include 23-year observations from the Crustal Movement Observation Network of China(CMONOC),displacements inferred from the Gravity Recovery and Climate Experiment(GRACE),and loadings derived from Geophysical models(GM).The results reveal that all CMONOC time series exhibit seasonal signals characterized by amplitude and phase modulations,and the SSA method outperforms the traditional least squares fitting(LSF)method in extracting and interpreting the time-varying seasonal signals from the original time series.The decrease in the root mean square(RMS)correlates well with the annual cycle variance estimated by the SSA method,and the average reduction in noise amplitudes is nearly twice as much for SSA filtered results compared with those from the LSF method.With SSA analysis,the time-varying seasonal signals for all the selected stations can be identified in the reconstructed components corresponding to the first ten eigenvalues.Moreover,both RMS reduction and correlation analysis imply the advantages of GRACE solutions in explaining the GNSS periodic variations,and the geophysical effects can account for 71%of the GNSS annual amplitudes,and the average RMS reduction is 15%.The SSA method has proved to be useful for investigating the GNSS timevarying seasonal signals.It could be applicable as an auxiliary tool in the improvement of nonlinear variations investigations. 展开更多
关键词 GNSS coordinate time series Singularspectrumanalysis Time-varying seasonal signals Loading effects GRACE
原文传递
Generation of low-temperature plasma by pulse-width modulated signals and monitoring of the interaction thereof with the surface of objects
10
作者 Tianbao MA Yauheni KALENKOVICH +1 位作者 Valeriy ROKACH Anatoly OSIPOV 《Plasma Science and Technology》 2025年第1期73-80,共8页
The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma g... The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered. 展开更多
关键词 low-temperature atmospheric pressure plasma parameters of plasma-exciting signals energy consumption reactive and apparent power plasma-object interaction
在线阅读 下载PDF
Online Estimation of DC-link Capacitor Parameters of Three-Level NPC Converters Using Inherent Signals Analysis
11
作者 Ricardo Lucio de Araujo Ribeiro Reuben Palmer Rezende de Sousa +2 位作者 Alexandre Cunha Oliveira Antonio Marcus Nogueira Lima Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 2025年第7期1434-1444,共11页
This paper presents a method for estimating the parameters of DC-link capacitors in three-level NPC voltage source inverters(3L-NPC-VSI)used in grid-tied systems.The technique uses the signals generated by the intermo... This paper presents a method for estimating the parameters of DC-link capacitors in three-level NPC voltage source inverters(3L-NPC-VSI)used in grid-tied systems.The technique uses the signals generated by the intermodulation caused by the PWM strategy and converter topology interaction to estimate the capacitor parameters of the converter DC-link.It utilizes an observer-based structure consisting of a recursive noninteger sliding discrete Fourier transform(rnSDFT)and an RLS filter improved with a forgetting factor(oSDFT-RLS)to accurately estimate the capacitance and equivalent series resistance(ESR).Importantly,this method does not require additional sensors beyond those already installed in off-the-shelf 3L-NPC-VSI systems,ensuring its noninvasiveness.Furthermore,the oSDFTRLS estimates capacitor parameters in the time-frequency domain,enabling the tracking of capacitor degradation and predicting potential faults.Experimental results from the laboratory setup demonstrate the effectiveness of the proposed condition monitoring method. 展开更多
关键词 Aluminum electrolytic capacitors(AEC) condition monitoring forgetting factor inherent signals parameter estimation recursive least squares(RLS) sliding discrete Fourier transform(SDFT) three-level NPC converter
在线阅读 下载PDF
On Similarities and Differences of Invasive and Non-Invasive Electrical Brain Signals in Brain-Computer Interfacing
12
作者 David Steyrl Reinmar J. Kobler Gernot R. Müller-Putz 《Journal of Biomedical Science and Engineering》 2016年第8期393-398,共7页
We perceive that some Brain-Computer Interface (BCI) researchers believe in totally different origins of invasive and non-invasive electrical BCI signals. Based on available literature we argue, however, that although... We perceive that some Brain-Computer Interface (BCI) researchers believe in totally different origins of invasive and non-invasive electrical BCI signals. Based on available literature we argue, however, that although invasive and non-invasive BCI signals are different, the underlying origin of electrical BCIs signals is the same. 展开更多
关键词 Brain-Computer Interfaces Electrical Brain signals Invasive signals Non-Invasive signals COMPARISON
在线阅读 下载PDF
RBOHD,GLR3.3,and GLR3.6 cooperatively control wounding hypocotyl-induced systemic Ca^(2+) signals,jasmonic acid,and glucosinolates in Arabidopsis leaves
13
作者 Che Zhan Na Xue +2 位作者 Zhongxiang Tianyin Zheng Jianqiang Wu 《Plant Diversity》 2025年第4期690-701,共12页
Ca^(2+)signaling plays crucial roles in plant stress responses,including defense against insects.To counteract insect feeding,different parts of a plant deploy systemic signaling to communicate and coordinate defense ... Ca^(2+)signaling plays crucial roles in plant stress responses,including defense against insects.To counteract insect feeding,different parts of a plant deploy systemic signaling to communicate and coordinate defense responses,but little is known about the underlying mechanisms.In this study,micrografting,in vivo imaging of Ca^(2+)and reactive oxygen species(ROS),quantification of jasmonic acid(JA)and defensive metabolites,and bioassay were used to study how Arabidopsis seedlings regulate systemic responses in leaves after hypocotyls are wounded.We show that wounding hypocotyls rapidly activated both Ca^(2+)and ROS signals in leaves.RBOHD,which functions to produce ROS,along with two glutamate receptors GLR3.3 and GLR3.6,but not individually RBOHD or GLR3.3 and GLR3.6,in hypocotyls regulate the dynamics of systemic Ca^(2+)signals in leaves.In line with the systemic Ca^(2+)signals,after wounding hypocotyl,RBOHD,GLR3.3,and GLR3.6 in hypocotyl also cooperatively regulate the transcriptome,hormone jasmonic acid,and defensive secondary metabolites in leaves of Arabidopsis seedlings,thus controlling the systemic resistance to insects.Unlike leaf-to-leaf systemic signaling,this study reveals the unique regulation of wounding-induced hypocotyl-to-leaf systemic signaling and sheds new light on how different plant organs use complex signaling pathways to modulate defense responses. 展开更多
关键词 Signal transduction GRAFTING Reactive oxygen species Calcium signaling GLUTAMATE Jasmonic acid
在线阅读 下载PDF
Quantum stochastic filters for nonlinear time-domain filtering of communication signals 被引量:2
14
作者 朱仁祥 吴乐南 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期22-25,共4页
Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger eq... Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger equation and the time-variant probability density function of signals is estimated by solution of the equation. It is shown that obviously different performances can be achieved by the control of weight coefficients of potential fields. Based on this characteristic, a novel filtering algorithm is proposed, and utilizing this algorithm, the nonlinear waveform distortion of output signals and the denoising capability of the filters can be compromised. This will make the application of quantum stochastic filters be greatly extended, such as in applying the filters to the processing of communication signals. The predominant performance of quantum stochastic filters is shown by simulation results. 展开更多
关键词 communication signals processing nonlinear filtering quantum stochastic filters
在线阅读 下载PDF
Wireless location algorithm using digital broadcasting signals based on neural network 被引量:1
15
作者 柯炜 吴乐南 殷奎喜 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期394-398,共5页
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ... In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification. 展开更多
关键词 digital broadcasting signals neural network extended Kalman filter (EKF) backwards error propagation algorithm multilayer perceptron
在线阅读 下载PDF
A Method for Detecting Non-Cooperative Communication Signals Utilizing Multi-Resolution Time-Frequency Images
16
作者 Zhaoqi Zhang Chundong Qi Danping Yu 《Journal of Beijing Institute of Technology》 2025年第5期447-457,共11页
Non-cooperative communication detection is a key technology for locating radio interfer-ence sources and conducting reconnaissance on adversary radiation sources.To meet the require-ments of wide-area monitoring,a sin... Non-cooperative communication detection is a key technology for locating radio interfer-ence sources and conducting reconnaissance on adversary radiation sources.To meet the require-ments of wide-area monitoring,a single interception channel often contains mixed multi-source sig-nals and interference,resulting in generally low signal-to-noise ratio(SNR)of the received signals;meanwhile,improving detection quality urgently requires either high frequency resolution or high-time resolution,which poses severe challenges to detection techniques based on time-frequency rep-resentations(TFR).To address this issue,this paper proposes a fixed-frame-structure signal detec-tion algorithm that integrates image enhancement and multi-scale template matching:first,the Otsu-Sauvola hybrid thresholding algorithm is employed to enhance TFR features,suppress noise interference,and extract time-frequency parameters of potential target signals(such as bandwidth and occurrence time);then,by exploiting the inherent time-frequency characteristics of the fixed-frame structure,the signal is subjected to multi-scale transformation(with either high-frequency resolution or high-time resolution),and accurate detection is achieved through the corresponding multi-scale template matching.Experimental results demonstrate that under 0 dB SNR conditions,the proposed algorithm achieves a detection rate greater than 87%,representing a significant improvement over traditional methods. 展开更多
关键词 signal detection non-cooperative communication signal image enhancement time-fre-quency transformation
在线阅读 下载PDF
Eltrombopag in pediatrics:revealing hidden signals of adverse drug events
17
作者 Yingqiu Tu Tiantian Xu +1 位作者 Nan Zhong Xin Lai 《Journal of Chinese Pharmaceutical Sciences》 2025年第11期1033-1040,共8页
This study sought to investigate adverse drug event(ADE)signals associated with eltrombopag use in pediatric patients aged 0–18 years,utilizing data from the U.S.Food and Drug Administration Adverse Event Reporting S... This study sought to investigate adverse drug event(ADE)signals associated with eltrombopag use in pediatric patients aged 0–18 years,utilizing data from the U.S.Food and Drug Administration Adverse Event Reporting System(FAERS).By analyzing this extensive pharmacovigilance database,the study aimed to offer meaningful insights for improving the clinical safety of eltrombopag in children.Data covering eltrombopag-related ADEs from Q12004 to Q42023 were extracted from FAERS,and signal detection was conducted using both the reporting odds ratio(ROR)and proportional reporting ratio(PRR)methods.ADEs were categorized based on the System Organ Class(SOC)classification in MedDRA version 25.0.A total of 582 reports involving pediatric patients receiving eltrombopag were identified,encompassing 21 SOC categories.The analysis revealed that,in addition to the known ADEs listed in the drug label,clinicians should remain vigilant for potential off-label ADE signals.These included abnormal platelet counts,thrombocytosis,antiphospholipid syndrome,myelofibrosis,reduced serum iron levels,myelodysplastic syndrome,hepatic infections,and other related conditions.Given these findings,it is strongly recommended that serum iron and ferritin levels should be routinely monitored in pediatric patients undergoing eltrombopag therapy,particularly during long-term treatment.Such proactive surveillance may help prevent the onset of iron deficiency anemia and enhance overall treatment safety. 展开更多
关键词 Children Off-label medication ELTROMBOPAG Signal mining Adverse drug events
原文传递
Deep learning-based compressed sampling reconstruction algorithm for digitizing intensive neutron ToF signals
18
作者 Chao Deng Shu-Jun Wang +6 位作者 Qin Hu Ying-Hong Tang Peng-Cheng Li Bo Xie Jian-Bo Yang Xian-Guo Tuo Qi-Biao Wang 《Nuclear Science and Techniques》 2025年第7期1-13,共13页
Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,th... Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,the high hardware costs and data burden associated with the acquisition of neutron ToF signals pose significant challenges.Higher sampling rates increase the data volume,data processing,and storage hardware costs.Compressed sampling can address these challenges,but it faces issues regarding optimal sampling efficiency and high-quality reconstructed signals.This paper proposes a revolutionary deep learning-based compressed sampling(DL-CS)algorithm for reconstructing neutron ToF signals that outperform traditional compressed sampling methods.This approach comprises four modules:random projection,rising dimensions,initial reconstruction,and final reconstruction.Initially,the technique adaptively compresses neutron ToF signals sequentially using three convolutional layers,replacing random measurement matrices in traditional compressed sampling theory.Subsequently,the signals are reconstructed using a modified inception module,long short-term memory,and self-attention.The performance of this deep compressed sampling method was quantified using the percentage root-mean-square difference,correlation coefficient,and reconstruction time.Experimental results showed that our proposed DL-CS approach can significantly enhance signal quality compared with other compressed sampling methods.This is evidenced by a percentage root-mean-square difference,correlation coefficient,and reconstruction time results of 5%,0.9988,and 0.0108 s,respectively,obtained for sampling rates below 10%for the neutron ToF signal generated using an electron-beam-driven photoneutron source.The results showed that the proposed DL-CS approach significantly improves the signal quality compared with other compressed sampling methods,exhibiting excellent reconstruction accuracy and speed. 展开更多
关键词 Deep learning Compressed sampling Neutron ToF signal LSTM Inception block Self-attention
在线阅读 下载PDF
An Integrated System Evaluation Engine for Cross-Domain Simulation and Design Optimization of a Transceiver Front-End Dealing with Complex OFDM Signals
19
作者 Hu Chunyu Shi Weimin +1 位作者 Li Mingyu C.Patrick Yue 《China Communications》 2025年第12期183-193,共11页
Traditionally,a continuous-wave(CW)signal is used to simulate RF circuits during the design procedure,while the fabricated circuits are measured by modulated signals in the test phase,because modulated signals are use... Traditionally,a continuous-wave(CW)signal is used to simulate RF circuits during the design procedure,while the fabricated circuits are measured by modulated signals in the test phase,because modulated signals are used in reality.It is almost impossible to use a CW signal to predict system performances,such as error vector magnitude(EVM),bit error rate(BER),etc.,of a transceiver front-end when dealing with complex modulated signals.This paper develops an integrated system evaluation engine(ISEE)to evaluate the system performances of a transceiver front-end or its sub-circuits.This crossdomain simulation platform is based on Matlab,advanced design system(ADS),and Cadence simulators to link the baseband signals and transceiver frond-end.An orthogonal frequency division multiplex(OFDM)modem is implemented in Matlab for evaluating the system performances.The modulated baseband signal from Matlab is dynamically fed into ADS,which includes transceiver front-end for co-simulation.The sub-block circuits of the transceiver front-end can be implemented using ADS and Cadence simulators.After system-level circuit simulation in ADS,the output signal is dynamically delivered to Matlab for demodulation.To simplify the use of the co-simulation platform,a graphical user interface(GUI)is constructed using Matlab.The parameters of the OFDM signals can be easily reconfigured on the GUI to simulate RF circuits with different modulation schemes.To demonstrate the effectiveness of the ISEE,a 3.5 GHz power amplifier is simulated and characterized using 20 MHz 16-and 64-QAM OFDM signals. 展开更多
关键词 cross-domain simulation OFDM signal power amplifier transceiver front-end
在线阅读 下载PDF
An ultra energy-saving mechanism based on beacon signals for 6G networks
20
作者 Ailin Deng Xiaoqian Li +1 位作者 Gang Feng Lu Guan 《Digital Communications and Networks》 2025年第5期1330-1342,共13页
Terahertz(THz) and millimeter Wave(mmWave) have been considered as potential frequency bands for 6G cellular systems to meet the need of ultra-high data rates. However, indoor communications could be blocked in THz/mm... Terahertz(THz) and millimeter Wave(mmWave) have been considered as potential frequency bands for 6G cellular systems to meet the need of ultra-high data rates. However, indoor communications could be blocked in THz/mmW cellular systems due to the high free-space propagation loss. Deploying a large number of small base stations indoors has been considered as a promising solution for solving indoor coverage problems. However, base station dense deployment leads to a significant increase in system energy consumption. In this paper, we develop a novel ultra-efficient energy-saving mechanism with the aim of reducing energy consumption in 6G distributed indoor base station scenarios. Unlike the existing relevant protocol framework of 3GPP, which operates the cellular system based on constant system signaling messages(including cell ID, cell reselection information, etc.), the proposed mechanism eliminates the need for system messages. The intuition comes from the observation that the probability of having no users within the coverage area of an indoor base station is high, hence continuously sending system messages to guarantee the quality of service is unnecessary in indoor scenarios. Specifically, we design a dedicated beacon signal to detect whether there are users in the coverage area of the base station and switch off the main communication module when there are no active users for energy saving. The beacon frame structure is carefully designed based on the existing 3GPP specifications with minimal protocol modifications, and the protocol parameters involved are optimized. Simulation results show that the proposed mechanism can reduce the system energy from the order of tens of watts to the order of hundreds of milliwatts. Compared to traditional energy-saving schemes, the proposed mechanism achieves an average energy-saving gain of 58%, with a peak energy-saving gain of 90%. 展开更多
关键词 6G Indoor coverage Energy saving User detection Beacon signal
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部