In this article, analytical results are obtained apparently for the first time in the literature, for the lower and upper bounds of the roots of quadratic equations when two or all three coefficients a, b, c constitut...In this article, analytical results are obtained apparently for the first time in the literature, for the lower and upper bounds of the roots of quadratic equations when two or all three coefficients a, b, c constitute an interval, with a method called the sign-variation analysis. The results are compared with the parametrization technique offered by Elishakoff and Miglis, and with the solution yielded by minimization and maximization commands of the Maple software. Solutions for some interval word problems are also provided to edulcorate the methodology. This article only focuses on the real roots of those quadratic equations, complex solutions being beyond this investigation.展开更多
文摘In this article, analytical results are obtained apparently for the first time in the literature, for the lower and upper bounds of the roots of quadratic equations when two or all three coefficients a, b, c constitute an interval, with a method called the sign-variation analysis. The results are compared with the parametrization technique offered by Elishakoff and Miglis, and with the solution yielded by minimization and maximization commands of the Maple software. Solutions for some interval word problems are also provided to edulcorate the methodology. This article only focuses on the real roots of those quadratic equations, complex solutions being beyond this investigation.