期刊文献+
共找到247,471篇文章
< 1 2 250 >
每页显示 20 50 100
Integrated guidance and control design of a flight vehicle with side-window detection 被引量:3
1
作者 Tianyu ZHENG Yu YAO +1 位作者 Fenghua HE Denggao JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期749-764,共16页
This paper considers the guidance and control problem of a flight vehicle with sidewindow detection. In order to guarantee the target remaining in the seeker's sight of view, the line of sight and the attitude of the... This paper considers the guidance and control problem of a flight vehicle with sidewindow detection. In order to guarantee the target remaining in the seeker's sight of view, the line of sight and the attitude of the flight vehicle should be under some constraints caused by the sidewindow, which leads to coupling between the guidance and the attitude dynamics model. To deal with the side-window constraints and the coupling, a novel Integrated Guidance and Control(IGC)design approach is proposed. Firstly, the relative motion equations are derived in the body-Line of Sight(LOS) coordinate system. And the guidance and control problem of the flight vehicle is formulated into an IGC problem with state constraints. Then, based on the singular perturbation method, the IGC problem is decomposed into the control design of the quasi-steady-state subsystem and the boundary-layer subsystem which can be designed separately. Finally, the receding horizon control is applied to the control design for the two subsystems. Simulation results show the effectiveness of the proposed approach. 展开更多
关键词 Integrated guidance and control Receding horizon control side-window detection Singular perturbation Terminal guidance
原文传递
YOLO-SDW: Traffic Sign Detection Algorithm Based on YOLOv8s Skip Connection and Dynamic Convolution
2
作者 Qing Guo Juwei Zhang Bingyi Ren 《Computers, Materials & Continua》 2026年第1期1433-1452,共20页
Traffic sign detection is an important part of autonomous driving,and its recognition accuracy and speed are directly related to road traffic safety.Although convolutional neural networks(CNNs)have made certain breakt... Traffic sign detection is an important part of autonomous driving,and its recognition accuracy and speed are directly related to road traffic safety.Although convolutional neural networks(CNNs)have made certain breakthroughs in this field,in the face of complex scenes,such as image blur and target occlusion,the traffic sign detection continues to exhibit limited accuracy,accompanied by false positives and missed detections.To address the above problems,a traffic sign detection algorithm,You Only Look Once-based Skip Dynamic Way(YOLO-SDW)based on You Only Look Once version 8 small(YOLOv8s),is proposed.Firstly,a Skip Connection Reconstruction(SCR)module is introduced to efficiently integrate fine-grained feature information and enhance the detection accuracy of the algorithm in complex scenes.Secondly,a C2f module based on Dynamic Snake Convolution(C2f-DySnake)is proposed to dynamically adjust the receptive field information,improve the algorithm’s feature extraction ability for blurred or occluded targets,and reduce the occurrence of false detections and missed detections.Finally,the Wise Powerful IoU v2(WPIoUv2)loss function is proposed to further improve the detection accuracy of the algorithm.Experimental results show that the average precision mAP@0.5 of YOLO-SDW on the TT100K dataset is 89.2%,and mAP@0.5:0.95 is 68.5%,which is 4%and 3.3%higher than the YOLOv8s baseline,respectively.YOLO-SDW ensures real-time performance while having higher accuracy. 展开更多
关键词 Traffic sign detection YOLOv8 object detection deep learning
在线阅读 下载PDF
Lightweight Small Defect Detection with YOLOv8 Using Cascaded Multi-Receptive Fields and Enhanced Detection Heads
3
作者 Shengran Zhao Zhensong Li +2 位作者 Xiaotan Wei Yutong Wang Kai Zhao 《Computers, Materials & Continua》 2026年第1期1278-1291,共14页
In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds... In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection. 展开更多
关键词 YOLOv8n PCB surface defect detection lightweight model small object detection
在线阅读 下载PDF
Lightweight YOLOv5 with ShuffleNetV2 for Rice Disease Detection in Edge Computing
4
作者 Qingtao Meng Sang-Hyun Lee 《Computers, Materials & Continua》 2026年第1期1395-1409,共15页
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno... This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements. 展开更多
关键词 Lightweight object detection YOLOv5-V2 ShuffleNet V2 edge computing rice disease detection
在线阅读 下载PDF
Deep Learning-Based Toolkit Inspection:Object Detection and Segmentation in Assembly Lines
5
作者 Arvind Mukundan Riya Karmakar +1 位作者 Devansh Gupta Hsiang-Chen Wang 《Computers, Materials & Continua》 2026年第1期1255-1277,共23页
Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone t... Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone to errors and lacks consistency,emphasizing the need for a reliable and automated inspection system.Leveraging both object detection and image segmentation approaches,this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning(DL)models.Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images of the toolkits.After applying multiple constraints and enhancing them through preprocessing and augmentation,a dataset consisting of 3300 annotated RGB-D photos was generated.Several DL models were selected through a comprehensive assessment of mean Average Precision(mAP),precision-recall equilibrium,inference latency(target≥30 FPS),and computational burden,resulting in a preference for YOLO and Region-based Convolutional Neural Networks(R-CNN)variants over ViT-based models due to the latter’s increased latency and resource requirements.YOLOV5,YOLOV8,YOLOV11,Faster R-CNN,and Mask R-CNN were trained on the annotated dataset and evaluated using key performance metrics(Recall,Accuracy,F1-score,and Precision).YOLOV11 demonstrated balanced excellence with 93.0%precision,89.9%recall,and a 90.6%F1-score in object detection,as well as 96.9%precision,95.3%recall,and a 96.5%F1-score in instance segmentation with an average inference time of 25 ms per frame(≈40 FPS),demonstrating real-time performance.Leveraging these results,a YOLOV11-based windows application was successfully deployed in a real-time assembly line environment,where it accurately processed live video streams to detect and segment tools within toolkits,demonstrating its practical effectiveness in industrial automation.The application is capable of precisely measuring socket dimensions by utilising edge detection techniques on YOLOv11 segmentation masks,in addition to detection and segmentation.This makes it possible to do specification-level quality control right on the assembly line,which improves the ability to examine things in real time.The implementation is a big step forward for intelligent manufacturing in the Industry 4.0 paradigm.It provides a scalable,efficient,and accurate way to do automated inspection and dimensional verification activities. 展开更多
关键词 Tool detection image segmentation object detection assembly line automation Industry 4.0 Intel RealSense deep learning toolkit verification RGB-D imaging quality assurance
在线阅读 下载PDF
A Synthetic Speech Detection Model Combining Local-Global Dependency
6
作者 Jiahui Song Yuepeng Zhang Wenhao Yuan 《Computers, Materials & Continua》 2026年第1期1312-1326,共15页
Synthetic speech detection is an essential task in the field of voice security,aimed at identifying deceptive voice attacks generated by text-to-speech(TTS)systems or voice conversion(VC)systems.In this paper,we propo... Synthetic speech detection is an essential task in the field of voice security,aimed at identifying deceptive voice attacks generated by text-to-speech(TTS)systems or voice conversion(VC)systems.In this paper,we propose a synthetic speech detection model called TFTransformer,which integrates both local and global features to enhance detection capabilities by effectively modeling local and global dependencies.Structurally,the model is divided into two main components:a front-end and a back-end.The front-end of the model uses a combination of SincLayer and two-dimensional(2D)convolution to extract high-level feature maps(HFM)containing local dependency of the input speech signals.The back-end uses time-frequency Transformer module to process these feature maps and further capture global dependency.Furthermore,we propose TFTransformer-SE,which incorporates a channel attention mechanism within the 2D convolutional blocks.This enhancement aims to more effectively capture local dependencies,thereby improving the model’s performance.The experiments were conducted on the ASVspoof 2021 LA dataset,and the results showed that the model achieved an equal error rate(EER)of 3.37%without data augmentation.Additionally,we evaluated the model using the ASVspoof 2019 LA dataset,achieving an EER of 0.84%,also without data augmentation.This demonstrates that combining local and global dependencies in the time-frequency domain can significantly improve detection accuracy. 展开更多
关键词 Synthetic speech detection transformer local-global time-frequency domain
在线阅读 下载PDF
The Research on Low-Light Autonomous Driving Object Detection Method
7
作者 Jianhua Yang Zhiwei Lv Changling Huo 《Computers, Materials & Continua》 2026年第1期1611-1628,共18页
Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing,this paper proposes a YOLO-LKSDS automatic driving d... Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing,this paper proposes a YOLO-LKSDS automatic driving detection model.Firstly,the Contrast-Limited Adaptive Histogram Equalisation(CLAHE)image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target;then,on the basis of the YOLOv5 model,the Kmeans++clustering algorithm is introduced to obtain a suitable anchor frame,and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target detection.Finally,an improved SEAM(Separated and Enhancement Attention Module)attention mechanism is combined with the DIOU-NMS algorithm to optimize the model’s performance when dealing with occlusion and dense scenes.Compared with the original model,the improved YOLO-LKSDS model achieves a 13.3%improvement in accuracy,a 1.7%improvement in mAP,and 240,000 fewer parameters on the BDD100K dataset.In order to validate the generalization of the improved algorithm,we selected the KITTI dataset for experimentation,which shows that YOLOv5’s accuracy improves by 21.1%,recall by 36.6%,and mAP50 by 29.5%,respectively,on the KITTI dataset.The deployment of this paper’s algorithm is verified by an edge computing platform,where the average speed of detection reaches 24.4 FPS while power consumption remains below 9 W,demonstrating high real-time capability and energy efficiency. 展开更多
关键词 Low-light images image enhancement target detection algorithm deployment
在线阅读 下载PDF
MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection
8
作者 Jia Liu Hao Chen +5 位作者 Hang Gu Yushan Pan Haoran Chen Erlin Tian Min Huang Zuhe Li 《Computers, Materials & Continua》 2026年第1期687-710,共24页
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra... Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability. 展开更多
关键词 Remote sensing change detection deep learning wavelet transform MULTI-SCALE
在线阅读 下载PDF
FMCSNet: Mobile Devices-Oriented Lightweight Multi-Scale Object Detection via Fast Multi-Scale Channel Shuffling Network Model
9
作者 Lijuan Huang Xianyi Liu +1 位作者 Jinping Liu Pengfei Xu 《Computers, Materials & Continua》 2026年第1期1292-1311,共20页
The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditio... The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditional approaches like network compression,quantization,and lightweight design often sacrifice accuracy or feature representation robustness.This article introduces the Fast Multi-scale Channel Shuffling Network(FMCSNet),a novel lightweight detection model optimized for mobile devices.FMCSNet integrates a fully convolutional Multilayer Perceptron(MLP)module,offering global perception without significantly increasing parameters,effectively bridging the gap between CNNs and Vision Transformers.FMCSNet achieves a delicate balance between computation and accuracy mainly by two key modules:the ShiftMLP module,including a shift operation and an MLP module,and a Partial group Convolutional(PGConv)module,reducing computation while enhancing information exchange between channels.With a computational complexity of 1.4G FLOPs and 1.3M parameters,FMCSNet outperforms CNN-based and DWConv-based ShuffleNetv2 by 1%and 4.5%mAP on the Pascal VOC 2007 dataset,respectively.Additionally,FMCSNet achieves a mAP of 30.0(0.5:0.95 IoU threshold)with only 2.5G FLOPs and 2.0M parameters.It achieves 32 FPS on low-performance i5-series CPUs,meeting real-time detection requirements.The versatility of the PGConv module’s adaptability across scenarios further highlights FMCSNet as a promising solution for real-time mobile object detection. 展开更多
关键词 Object detection lightweight network partial group convolution multilayer perceptron
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
10
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Automatic Detection of Health-Related Rumors: A Dual-Graph Collaborative Reasoning Framework Based on Causal Logic and Knowledge Graph
11
作者 Ning Wang Haoran Lyu Yuchen Fu 《Computers, Materials & Continua》 2026年第1期2163-2193,共31页
With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or p... With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media. 展开更多
关键词 Health rumor detection causal graph knowledge graph dual-graph fusion
在线阅读 下载PDF
A Dual-Attention CNN-BiLSTM Model for Network Intrusion Detection
12
作者 Zheng Zhang Jie Hao +2 位作者 Liquan Chen Tianhao Hou Yanan Liu 《Computers, Materials & Continua》 2026年第1期1119-1140,共22页
With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion det... With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion detection models,this paper proposes a Dual-Attention model for NID,which combines Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM)to design two modules:the FocusConV and the TempoNet module.The FocusConV module,which automatically adjusts and weights CNN extracted local features,focuses on local features that are more important for intrusion detection.The TempoNet module focuses on global information,identifies more important features in time steps or sequences,and filters and weights the information globally to further improve the accuracy and robustness of NID.Meanwhile,in order to solve the class imbalance problem in the dataset,the EQL v2 method is used to compute the class weights of each class and to use them in the loss computation,which optimizes the performance of the model on the class imbalance problem.Extensive experiments were conducted on the NSL-KDD,UNSW-NB15,and CIC-DDos2019 datasets,achieving average accuracy rates of 99.66%,87.47%,and 99.39%,respectively,demonstrating excellent detection accuracy and robustness.The model also improves the detection performance of minority classes in the datasets.On the UNSW-NB15 dataset,the detection rates for Analysis,Exploits,and Shellcode attacks increased by 7%,7%,and 10%,respectively,demonstrating the Dual-Attention CNN-BiLSTM model’s excellent performance in NID. 展开更多
关键词 Network intrusion detection class imbalance problem deep learning
在线阅读 下载PDF
Graph-Based Intrusion Detection with Explainable Edge Classification Learning
13
作者 Jaeho Shin Jaekwang Kim 《Computers, Materials & Continua》 2026年第1期610-635,共26页
Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to ... Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to changing attack patterns and complex network environments.In addition,it is difficult to explain the detection results logically using artificial intelligence.We propose a method for classifying network attacks using graph models to explain the detection results.First,we reconstruct the network packet data into a graphical structure.We then use a graph model to predict network attacks using edge classification.To explain the prediction results,we observed numerical changes by randomly masking and calculating the importance of neighbors,allowing us to extract significant subgraphs.Our experiments on six public datasets demonstrate superior performance with an average F1-score of 0.960 and accuracy of 0.964,outperforming traditional machine learning and other graph models.The visual representation of the extracted subgraphs highlights the neighboring nodes that have the greatest impact on the results,thus explaining detection.In conclusion,this study demonstrates that graph-based models are suitable for network attack detection in complex environments,and the importance of graph neighbors can be calculated to efficiently analyze the results.This approach can contribute to real-world network security analyses and provide a new direction in the field. 展开更多
关键词 Intrusion detection graph neural network explainable AI network attacks GraphSAGE
在线阅读 下载PDF
Pavement Crack Detection Based on Star-YOLO11
14
作者 Jiang Mi Zhijian Gan +3 位作者 Pengliu Tan Xin Chang Zhi Wang Haisheng Xie 《Computers, Materials & Continua》 2026年第1期962-983,共22页
In response to the challenges in highway pavement distress detection,such as multiple defect categories,difficulties in feature extraction for different damage types,and slow identification speeds,this paper proposes ... In response to the challenges in highway pavement distress detection,such as multiple defect categories,difficulties in feature extraction for different damage types,and slow identification speeds,this paper proposes an enhanced pavement crack detection model named Star-YOLO11.This improved algorithm modifies the YOLO11 architecture by substituting the original C3k2 backbone network with a Star-s50 feature extraction network.The enhanced structure adjusts the number of stacked layers in the StarBlock module to optimize detection accuracy and improve model efficiency.To enhance the accuracy of pavement crack detection and improve model efficiency,three key modifications to the YOLO11 architecture are proposed.Firstly,the original C3k2 backbone is replaced with a StarBlock-based structure,forming the Star-s50 feature extraction backbone network.This lightweight redesign reduces computational complexity while maintaining detection precision.Secondly,to address the inefficiency of the original Partial Self-attention(PSA)mechanism in capturing localized crack features,the convolutional prior-aware Channel Prior Convolutional Attention(CPCA)mechanism is integrated into the channel dimension,creating a hybrid CPC-C2PSA attention structure.Thirdly,the original neck structure is upgraded to a Star Multi-Branch Auxiliary Feature Pyramid Network(SMAFPN)based on the Multi-Branch Auxiliary Feature Pyramid Network architecture,which adaptively fuses high-level semantic and low-level spatial information through Star-s50 connections and C3k2 extraction blocks.Additionally,a composite dataset augmentation strategy combining traditional and advanced augmentation techniques is developed.This strategy is validated on a specialized pavement dataset containing five distinct crack categories for comprehensive training and evaluation.Experimental results indicate that the proposed Star-YOLO11 achieves an accuracy of 89.9%(3.5%higher than the baseline),a mean average precision(mAP)of 90.3%(+2.6%),and an F1-score of 85.8%(+0.5%),while reducing the model size by 18.8%and reaching a frame rate of 225.73 frames per second(FPS)for real-time detection.It shows potential for lightweight deployment in pavement crack detection tasks. 展开更多
关键词 Crack detection YOLO11 feature extraction attention mechanism feature fusion
在线阅读 下载PDF
Gradient-Guided Assembly Instruction Relocation for Adversarial Attacks Against Binary Code Similarity Detection
15
作者 Ran Wei Hui Shu 《Computers, Materials & Continua》 2026年第1期1372-1394,共23页
Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Althoug... Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC. 展开更多
关键词 Assembly instruction relocation adversary attack binary code similarity detection
在线阅读 下载PDF
Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks
16
作者 Asal Jameel Khudhair Amenah Dahim Abbood 《Computers, Materials & Continua》 2026年第1期1453-1483,共31页
Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r... Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification. 展开更多
关键词 Multi-objective optimization evolutionary algorithms community detection HEURISTIC METAHEURISTIC hybrid social network MODELS
在线阅读 下载PDF
Syntax-Aware Hierarchical Attention Networks for Code Vulnerability Detection
17
作者 Yongbo Jiang Shengnan Huang +1 位作者 Tao Feng Baofeng Duan 《Computers, Materials & Continua》 2026年第1期2252-2273,共22页
In the context of modern software development characterized by increasing complexity and compressed development cycles,traditional static vulnerability detection methods face prominent challenges including high false ... In the context of modern software development characterized by increasing complexity and compressed development cycles,traditional static vulnerability detection methods face prominent challenges including high false positive rates and missed detections of complex logic due to their over-reliance on rule templates.This paper proposes a Syntax-Aware Hierarchical Attention Network(SAHAN)model,which achieves high-precision vulnerability detection through grammar-rule-driven multi-granularity code slicing and hierarchical semantic fusion mechanisms.The SAHAN model first generates Syntax Independent Units(SIUs),which slices the code based on Abstract Syntax Tree(AST)and predefined grammar rules,retaining vulnerability-sensitive contexts.Following this,through a hierarchical attention mechanism,the local syntax-aware layer encodes fine-grained patterns within SIUs,while the global semantic correlation layer captures vulnerability chains across SIUs,achieving synergistic modeling of syntax and semantics.Experiments show that on benchmark datasets like QEMU,SAHAN significantly improves detection performance by 4.8%to 13.1%on average compared to baseline models such as Devign and VulDeePecker. 展开更多
关键词 Vulnerability detection abstract syntax tree syntax rule slicing hierarchical attention mechanism deep learning
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
18
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
UGEA-LMD: A Continuous-Time Dynamic Graph Representation Enhancement Framework for Lateral Movement Detection
19
作者 Jizhao Liu Yuanyuan Shao +2 位作者 Shuqin Zhang Fangfang Shan Jun Li 《Computers, Materials & Continua》 2026年第1期1924-1943,共20页
Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address thes... Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios. 展开更多
关键词 Advanced persistent threat(APTs) lateral movement detection continuous-time dynamic graph data enhancement
在线阅读 下载PDF
PhishNet: A Real-Time, Scalable Ensemble Framework for Smishing Attack Detection Using Transformers and LLMs
20
作者 Abeer Alhuzali Qamar Al-Qahtani +2 位作者 Asmaa Niyazi Lama Alshehri Fatemah Alharbi 《Computers, Materials & Continua》 2026年第1期2194-2212,共19页
The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integra... The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integrates transformer-based models(RoBERTa)and large language models(LLMs)(GPT-OSS 120B,LLaMA3.370B,and Qwen332B)to enhance smishing detection performance significantly.To mitigate class imbalance,we apply synthetic data augmentation using T5 and leverage various text preprocessing techniques.Our system employs a duallayer voting mechanism:weighted majority voting among LLMs and a final ensemble vote to classify messages as ham,spam,or smishing.Experimental results show an average accuracy improvement from 96%to 98.5%compared to the best standalone transformer,and from 93%to 98.5%when compared to LLMs across datasets.Furthermore,we present a real-time,user-friendly application to operationalize our detection model for practical use.PhishNet demonstrates superior scalability,usability,and detection accuracy,filling critical gaps in current smishing detection methodologies. 展开更多
关键词 Smishing attack detection phishing attacks ensemble learning CYBERSECURITY deep learning transformer-based models large language models
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部