期刊文献+
共找到170篇文章
< 1 2 9 >
每页显示 20 50 100
Side-Scan Sonar Image Detection of Shipwrecks Based on CSC-YOLO Algorithm
1
作者 Shengxi Jiao Fenghao Xu Haitao Guo 《Computers, Materials & Continua》 2025年第2期3019-3044,共26页
Underwater shipwreck identification technology, as a crucial technique in the field of marine surveying, plays a significant role in areas such as the search and rescue of maritime disaster shipwrecks. When facing the... Underwater shipwreck identification technology, as a crucial technique in the field of marine surveying, plays a significant role in areas such as the search and rescue of maritime disaster shipwrecks. When facing the task of object detection in shipwreck side-scan sonar images, due to the complex seabed environment, it is difficult to extract object features, often leading to missed detections of shipwreck images and slow detection speed. To address these issues, this paper proposes an object detection algorithm, CSC-YOLO (Context Guided Block, Shared Conv_Group Normalization Detection, Cross Stage Partial with 2 Partial Convolution-You Only Look Once), based on YOLOv8n for shipwreck side-scan sonar images. Firstly, to tackle the problem of small samples in shipwreck side-scan sonar images, a new dataset was constructed through offline data augmentation to expand data and intuitively enhance sample diversity, with the Mosaic algorithm integrated to strengthen the network’s generalization to the dataset. Subsequently, the Context Guided Block (CGB) module was introduced into the backbone network model to enhance the network’s ability to learn and express image features. Additionally, by employing Group Normalization (GN) techniques and shared convolution operations, we constructed the Shared Conv_GN Detection (SCGD) head, which improves the localization and classification performance of the detection head while significantly reducing the number of parameters and computational load. Finally, the Partial Convolution (PConv) was introduced and the Cross Stage Partial with 2 PConv (C2PC) module was constructed to help the network maintain effective extraction of spatial features while reducing computational complexity. The improved CSC-YOLO model, compared with the YOLOv8n model on the validation set, mean Average Precision (mAP) increases by 3.1%, Recall (R) increases by 6.4%, and the F1-measure (F1) increases by 4.7%. Furthermore, in the improved algorithm, the number of parameters decreases by 20%, the computational complexity decreases by 23.2%, and Frames Per Second (FPS) increases by 17.6%. In addition, compared with the advanced popular model, the superiority of the proposed model is proved. The subsequent experiments on real side-scan sonar images of shipwrecks fully demonstrate that the CSC-YOLO algorithm meets the requirements for actual side-scan sonar detection of underwater shipwrecks. 展开更多
关键词 Enhanced YOLOv8 side-scan sonar shipwreck detection group normalization deep learning
在线阅读 下载PDF
Side-Scan Sonar Image Synthesis Based on CycleGAN with 3D Models and Shadow Integration
2
作者 Byeongjun Kim Seung-Hun Lee Won-Du Chang 《Computer Modeling in Engineering & Sciences》 2025年第11期1237-1252,共16页
Side-scan sonar(SSS)is essential for acquiring high-resolution seafloor images over large areas,facilitat-ing the identification of subsea objects.However,military security restrictions and the scarcity of subsea targ... Side-scan sonar(SSS)is essential for acquiring high-resolution seafloor images over large areas,facilitat-ing the identification of subsea objects.However,military security restrictions and the scarcity of subsea targets limit the availability of SSS data,posing challenges for Automatic Target Recognition(ATR)research.This paper presents an approach that uses Cycle-Consistent Generative Adversarial Networks(CycleGAN)to augment SSS images of key subsea objects,such as shipwrecks,aircraft,and drowning victims.The process begins by constructing 3D models to generate rendered images with realistic shadows frommultiple angles.To enhance image quality,a shadowextractor and shadow region loss function are introduced to ensure consistent shadowrepresentation.Additionally,amulti-resolution learning structure enables effective training,even with limited data availability.The experimental results show that the generated data improved object detection accuracy when they were used for training and demonstrated the ability to generate clear shadow and background regions with stability. 展开更多
关键词 side-scan sonar(SSS) cycle-consistent generative adversarial networks(CycleGAN) automatic target recognition(ATR) sonar imaging sample augmentation image simulation image translation
在线阅读 下载PDF
Motion estimation in wide band synthetic aperture sonar based on the raw echo data using the method of displaced phase center antenna 被引量:3
3
作者 JIANG Xiaokui, SUN Chao (Member, IEEE), FANG Jie (Institute of Acoustic Engineering, Northwestern Polytechnical University, Xi’an 710072, China) 《声学技术》 CSCD 2003年第z1期56-59,共4页
Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, fo... Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, for example, sway yaw and surge that are the most important error sources. The phase error of a wide band synthetic aperture sonar is modeled and solutions to sway yaw and surge motion estimation based on the raw sonar echo data with a Displaced Phase Center Antenna (DPCA) method are proposed and their implementations are detailed in this paper. It is shown that the sway estimates can be obtained from the correlation lag and phase difference between the returns at coincident phase centers. An estimate of yaw is also possible if such a technique is applied to more than one overlapping phase center positions. Surge estimates can be obtained by identifying pairs of phase centers with a maximum correlation coefficient. The method works only if the platform velocity is low enough such that a number of phase centers from adjacent pings overlap. 展开更多
关键词 sonar SYNTHETIC APERTURE sonar (SAS) motion estimation RAW data DPCA.
在线阅读 下载PDF
DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation 被引量:2
4
作者 ZHAO Xiaohong QIN Rixia +3 位作者 ZHANG Qilei YU Fei WANG Qi HE Bo 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第5期1089-1096,共8页
In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS... In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition,which is conducive to submarine detection.However,because of the complexity of the marine environment,various noises in the ocean pollute the sonar image,which also encounters the intensity inhomogeneity problem.In this paper,we propose a novel neural network architecture named dilated convolutional neural network(DcNet)that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation.The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target,respectively.The core of our network is a novel block connection named DCblock,which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy.Furthermore,our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality im-ages.We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets.Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures,the accuracy of our method is still comparable,which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration. 展开更多
关键词 side-scan sonar(SSS) semantic segmentation dilated convolutions SUPER-RESOLUTION
在线阅读 下载PDF
YOLOv5-Based Seabed Sediment Recognition Method for Side-Scan Sonar Imagery 被引量:1
5
作者 WANG Ziwei HU Yi +1 位作者 DING Jianxiang SHI Peng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1529-1540,共12页
Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides ... Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery. 展开更多
关键词 seabed sediment real-time target recognition YOLOv5 model side-scan sonar imagery transfer learning
在线阅读 下载PDF
RepDNet:A re-parameterization despeckling network for autonomous underwater side-scan sonar imaging with prior-knowledge customized convolution
6
作者 Zhuoyi Li Zhisen Wang +2 位作者 Deshan Chen Tsz Leung Yip Angelo P.Teixeira 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期259-274,共16页
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo... Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency. 展开更多
关键词 side-scan sonar sonar image despeckling Domain knowledge RE-PARAMETERIZATION
在线阅读 下载PDF
Multi-beam Sonar and Side-scan Sonar Image Co-registering and Fusing
7
作者 阳凡林 刘经南 赵建虎 《Marine Science Bulletin》 CAS 2003年第1期16-23,共8页
Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated... Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated job before fusion. This paper suggests combining bathymetric data with intensity image, obtaining the characteristic points through the minimal angles of lines, and then deciding the corresponding image points by the maximal correlate coefficient in searching space. Finally, the second order polynomial is applied to the deformation model. After the images have been co-registered, Wavelet is used to fuse the images. It is shown that this algorithm can be used in the flat seafloor or the isotropic seabed. Verification is made in the paper with the observed data. 展开更多
关键词 Multi-beam sonar side-scan sonar Co-registering FUSION
在线阅读 下载PDF
A new data acquisition and processing system for profiling sonar
8
作者 徐小卡 桑恩方 +1 位作者 乔钢 王继胜 《Journal of Marine Science and Application》 2008年第3期168-173,共6页
A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profi... A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar.The system was designed for seabed petroleum pipeline detection and orientation,and can receive echo signals and process the data in real time,refreshing the display 10 times per second.Every node of the chirp sonar connects with data processing nodes through TCP/IP. Merely by adding nodes,the system’s processing ability can be increased proportionately without changing the software.System debugging and experimental testing proved the system to be practical and stable.This design provides a new method for high speed active sonar. 展开更多
关键词 profiling sonar IP network data acquisition parallel processing DSP
在线阅读 下载PDF
渔业声学数据后处理软件现状评述与展望:以Sonar5-Pro为例 被引量:2
9
作者 张辉 《渔业信息与战略》 2024年第1期29-38,共10页
渔业声学数据解析是渔业资源声学调查研究和应用的关键所在。目前全球渔业声学数据后处理的代表性软件主要有挪威Sonar5-Pro和澳大利亚Echoview。以Sonar5-Pro为例,开展了5个方面的研究:1)回顾了该软件自1994年以来近30年的发展历史;2)... 渔业声学数据解析是渔业资源声学调查研究和应用的关键所在。目前全球渔业声学数据后处理的代表性软件主要有挪威Sonar5-Pro和澳大利亚Echoview。以Sonar5-Pro为例,开展了5个方面的研究:1)回顾了该软件自1994年以来近30年的发展历史;2)介绍了软件对声学数据进行处理的总体思路,即前处理、数据分析和结果展示3个步骤及贯穿始终的数据检视功能,以及软件的5项重要设计理念;3)介绍了该软件9项代表性功能特性的实现思路和具体方法;4)以主流分析应用鱼类生物量分析过程为例,介绍了软件的数据处理流程;5)对该软件的3项核心关键技术,即多目标跟踪(multiple target tracking)、交叉过滤跟踪(crossfilter tracker)和图像分析工具(image analysis)进行了详细介绍。研究发现,一个成熟的渔业声学数据后处理系统庞大而复杂,涉及渔业、物理学和计算机多学科知识的融合,着力加强相关领域交叉学科人才培养,充分借鉴吸收国外已有先进理念和成熟技术,基于各种应用场景需求研发具有自主知识产权的分析软件,采用引进消化吸收再逐点突破最终集成创新的方式,可以作为未来提升中国渔业声学数据解析能力和水平的重要发展途径。 展开更多
关键词 渔业声学 渔业声呐 探鱼仪 回声图 数据处理 sonar5-Pro
在线阅读 下载PDF
Sedimentary processes in Zenisu deep-sea channel revealed by side-scan imagery
10
作者 吴时国 郭军华 TOKUYAMA Hidekazu 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2005年第4期368-375,共8页
Side-scan sonar data collected by Cruises 99-09 Leg 2 and 00-06 Leg l of R/V Yokosuka were used to reveal the sedimentary processes in Zenisu deep-sea channel. The middle and lower segments of the channel are rich in ... Side-scan sonar data collected by Cruises 99-09 Leg 2 and 00-06 Leg l of R/V Yokosuka were used to reveal the sedimentary processes in Zenisu deep-sea channel. The middle and lower segments of the channel are rich in turbidite and other debrite deposits. By high-resolution imaging, three sedimentary processes were distinguished with distinct acoustic features. 1. Slumps and slides occur with contrasting backscatter, rough surface textures, blockings, and acoustic shadows at headwalls. They are very extensive and often in lobate form downslope. 2. Debris flow has uniform, general medium backscatter, sometimes showing marbling/lineation in lobate form. 3. Turbidity current is characterized by low backscatter confined to the channel as acoustic signal is attenuated. Regional tectonics must be the dominating factor that controls deposition pattern in this area. 展开更多
关键词 side-scan sonar image sedimentary processes deep-sea channel Nankai Trough
原文传递
一种改进YOLOv8的水下声呐图像目标检测方法 被引量:1
11
作者 刘凡诚 邢传玺 +2 位作者 魏光春 崔晶 董赛蒙 《应用科技》 2025年第1期34-40,共7页
为解决水下声呐图像中目标形状小、信息少等识别精度低带来的漏检、误检问题,本文提出一种改进YOLOv8水下声呐图像目标检测方法(YOLOv8-Underwater Sonar Image,YOLOv8-USI)。首先对水下声呐图像进行图像增强、图像降噪等预处理,并利用... 为解决水下声呐图像中目标形状小、信息少等识别精度低带来的漏检、误检问题,本文提出一种改进YOLOv8水下声呐图像目标检测方法(YOLOv8-Underwater Sonar Image,YOLOv8-USI)。首先对水下声呐图像进行图像增强、图像降噪等预处理,并利用生成对抗网络对水下声呐图像训练集进行扩充,防止过拟合现象;其次,引入GhostNet模块解决YOLOv8网络结构参数量多的问题,从而提高水下目标识别速度;接着根据预处理后声呐图像的特征,提取水下声呐图像中的目标特征信息。最后,根据识别到的目标物体置信度,验证声呐图像中目标物体的漏检与误检情况。实验结果表明,输出结果图的目标识别效果与整个检测过程速度均有所提高,时间加快0.08 s,因此YOLOv8-USI网络结构可有效提高水下声呐图像目标检测精度与速度。 展开更多
关键词 侧扫声呐图像 图像降噪 目标检测 YOLOv8-USI 过拟合 数据增强 生成对抗网络 GhostNet模块
在线阅读 下载PDF
声学图像的水下小目标三维形状恢复
12
作者 易兵 蒋立军 +1 位作者 刘佳 许枫 《应用声学》 北大核心 2025年第2期454-462,共9页
基于二维声呐图像的三维场景恢复在水下救援等应用场景中具有重要意义。单一的三维重构算法难以同时实现图像细节信息的恢复与背景噪声的抑制,使得目标恢复精度较低。针对这一问题,提出了一种数据融合的三维重构方法。该方法首先利用C... 基于二维声呐图像的三维场景恢复在水下救援等应用场景中具有重要意义。单一的三维重构算法难以同时实现图像细节信息的恢复与背景噪声的抑制,使得目标恢复精度较低。针对这一问题,提出了一种数据融合的三维重构方法。该方法首先利用C均值模糊聚类算法提取图像的目标区域与背景区域,然后针对目标区域采用细节恢复较好的三维重构算法,背景区域选取噪声抑制能力较强的恢复算法,并将二者恢复结果进行融合,从而得到图像细节信息恢复较好及抑制背景噪声的能力较强的重构结果,提升三维恢复结果的精度。实验数据处理表明,该方法与传统方法相比,其重构结果的整体平均误差从24.3%下降至10%,说明该方法能更精准地重构声呐图像的三维形状。 展开更多
关键词 声呐图像 三维重构 图像分割 数据融合
在线阅读 下载PDF
基于WPF的侧扫声呐数据处理软件设计与实现
13
作者 朱维强 余锐 白子涵 《科技创新与应用》 2025年第35期132-135,共4页
侧扫声呐系统可以提供高分辨率的水下扫测图像,在海洋工程、水下考古、军事国防和水生生物研究等诸多领域有着广泛应用,为解决当前主流侧扫声呐数据处理软件算法封闭、定制化难的问题,该文研发适配AI算法且具有可扩展性的侧扫声呐数据... 侧扫声呐系统可以提供高分辨率的水下扫测图像,在海洋工程、水下考古、军事国防和水生生物研究等诸多领域有着广泛应用,为解决当前主流侧扫声呐数据处理软件算法封闭、定制化难的问题,该文研发适配AI算法且具有可扩展性的侧扫声呐数据处理软件。软件基于WPF构建现代化交互界面,采用4层架构设计,实现数据管理、数据处理、成果导出等功能,经项目实测数据测试,可稳定解码XTF数据,流畅完成数据处理,能导出为GeoTIFF成果供后续分析出图,满足侧扫声呐地貌调查项目应用需求。 展开更多
关键词 侧扫声呐 数据处理软件 模型推理 软件设计 AI算法
在线阅读 下载PDF
基于声纳的水下柔性目标探测识别方法研究
14
作者 张宁哲 李清洲 +2 位作者 朱云江 胡常青 王国栋 《舰船电子工程》 2025年第5期174-180,共7页
柔性障碍物作为一种清除困难、潜在危害大的障碍物,如水草、渔网等,会对船舶航行、船艇作业等造成较大的威胁。为解决这一问题,论文以渔网为例,提出了一种基于声纳的水下柔性障碍物探测与识别方法。利用前视主动声纳对渔网水下部分进行... 柔性障碍物作为一种清除困难、潜在危害大的障碍物,如水草、渔网等,会对船舶航行、船艇作业等造成较大的威胁。为解决这一问题,论文以渔网为例,提出了一种基于声纳的水下柔性障碍物探测与识别方法。利用前视主动声纳对渔网水下部分进行探测,并对声纳灰度图像利用伽马变换和裁剪进行图像增强以及去噪,最后分别采用四种深度学习算法进行识别,形成对比实验。经实验验证,YOLOv8算法对比其他三种算法的实时性较好、识别准确率较高,具有一定的实际应用价值。 展开更多
关键词 前视主动声纳 数据采集 图像增强 目标识别
在线阅读 下载PDF
基于YOLOv8的成像声呐信息获取系统研究
15
作者 熊鑫泉 方辉 +1 位作者 司泰来 戴阳 《工业控制计算机》 2025年第10期105-107,共3页
开发了一款基于深度学习的声呐数据解析与特征识别软件,旨在提高声呐图像信息提取的效率和准确性。声呐技术广泛应用于渔业、资源探测和海洋测绘等领域,但传统数据处理方式面临着大量数据处理时间长、计算资源消耗大的问题。为此,采用YO... 开发了一款基于深度学习的声呐数据解析与特征识别软件,旨在提高声呐图像信息提取的效率和准确性。声呐技术广泛应用于渔业、资源探测和海洋测绘等领域,但传统数据处理方式面临着大量数据处理时间长、计算资源消耗大的问题。为此,采用YOLOv8目标检测模型,从声呐图像中识别目标物回声特征,从而简化数据解析流程。软件分为两个主要功能模块:第一个模块负责读取和解析离线声呐数据,生成声呐图像;第二个模块利用YOLOv8进行特征识别,提取磷虾、海底以及伪底等关键信息。研究使用的声呐数据来源于科学鱼探仪EK80,标注工具为Roboflow,实验中共标注1916张图像,划分为训练集、测试集和验证集。经过120轮训练,模型在目标检测中F1 Score整体达到0.85以上,展现出良好的识别性能。该软件不仅促进了渔业研究的深入分析,还为海洋生态系统的了解提供了有力支持。 展开更多
关键词 声呐技术 深度学习 YOLOv8 数据解析 特征识别 渔业
在线阅读 下载PDF
基于超体素划分的三维声呐点云数据滤波方法比较
16
作者 甘淏柽 张帆 +3 位作者 贺正军 孙爱国 熊荣军 吴云龙 《城市勘测》 2025年第1期51-58,共8页
三维声呐点云数据的滤波效果直接影响点云重建的精度。针对测深数据滤波方法在三维声呐点云数据适用性不足的现状,开展了基于超体素划分的三维声呐点云数据滤波方法研究。利用超体素聚类划分方法构建点云块趋势面,给出顾及三维方向偏差... 三维声呐点云数据的滤波效果直接影响点云重建的精度。针对测深数据滤波方法在三维声呐点云数据适用性不足的现状,开展了基于超体素划分的三维声呐点云数据滤波方法研究。利用超体素聚类划分方法构建点云块趋势面,给出顾及三维方向偏差的检测数据构建策略,并对三种滤波效果进行了定量分析。计算结果显示,Dixon滤波和Grubbs滤波的总误差分别为2.22%和3.04%,总误差较小且接近,Dixon滤波可以更好地保留水下结构物、底层地面点等位置的特征信息,Grubbs滤波对于近地噪点的过滤效果优于Dixon滤波。3σ滤波总误差为5.84%,较前两种滤波总误差较大,在水下结构物、近地点等区域易出现过滤波和欠滤波的问题,滤波效果较差。 展开更多
关键词 三维声呐点云数据 超体素 滤波方法比较
在线阅读 下载PDF
机器学习方法在图像声呐数据中的研究应用
17
作者 姚煜 《网络新媒体技术》 2025年第5期38-45,共8页
声呐数据分析是一项复杂而有价值的工作,可采用机器学习方法对声呐数据进行预测分析。首先预处理图像声呐数据,包括归一化、去噪、特征提取等,然后采用4种机器学习模型预测分析,最后评估模型性能。4种模型中,神经网络模型性能最佳,ROC... 声呐数据分析是一项复杂而有价值的工作,可采用机器学习方法对声呐数据进行预测分析。首先预处理图像声呐数据,包括归一化、去噪、特征提取等,然后采用4种机器学习模型预测分析,最后评估模型性能。4种模型中,神经网络模型性能最佳,ROC曲线下面积(AUC)值达0.85,表示模型具有良好的预测能力,其余3种模型的AUC值约为0.8,表示模型具有一定的预测能力。对于实时性要求高的选择轻量级模型,如线性模型等,对于数据复杂的选择神经网络等模型,并可根据不同需求设置阈值。声呐数据分析的未来发展方向侧重于开发更智能的算法,通过机器学习等技术,实现更高效的目标识别与分类,提高分析的速度和准确率。 展开更多
关键词 声呐数据 机器学习 分类预测 数据预处理 阈值分析
在线阅读 下载PDF
基于XGBoost算法的多波束声呐数据海缆自动识别
18
作者 单晓晖 季洋阳 +1 位作者 禹杨华 顾晟 《海洋技术学报》 2025年第2期45-53,共9页
海上风电场海底电缆的全面探测,对于海上风电场后续的生产和维护至关重要。现阶段的海底电缆识别需要检测人员根据多波束数据的影像特征手动判断,效率低且主观性强。为此,本文基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法... 海上风电场海底电缆的全面探测,对于海上风电场后续的生产和维护至关重要。现阶段的海底电缆识别需要检测人员根据多波束数据的影像特征手动判断,效率低且主观性强。为此,本文基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法,提出了一套适用于多波束点云数据的海缆自动识别方法。首先计算多波束点云数据的几何特征;之后建立XGBoost分类模型,将几何特征为参数输入模型进行训练;最后将所需探测工区的多波束声呐数据输入训练好的模型,从而实现海缆的自动识别。将本文方法应用于某海上风电场实际工区的海缆探测之中,结果表明:XGBoost算法对于多波束数据裸露海缆识别具有较高的准确性,可以极大地节约人工检测成本。 展开更多
关键词 海缆识别 多波束声呐 点云数据 机器学习 XGBoost算法
在线阅读 下载PDF
声呐智能探测和识别技术概述
19
作者 王戈 《网络新媒体技术》 2025年第3期46-53,共8页
随着互联网的普及、传感器的泛在和大数据的涌现,数据和知识在人类社会、物理空间和信息空间之间的交叉融合与相互作用,使得人工智能发展的信息环境和数据基础已经发生巨大而深刻的变化,形成以大数据智能、跨媒体智能、人机混合增强智... 随着互联网的普及、传感器的泛在和大数据的涌现,数据和知识在人类社会、物理空间和信息空间之间的交叉融合与相互作用,使得人工智能发展的信息环境和数据基础已经发生巨大而深刻的变化,形成以大数据智能、跨媒体智能、人机混合增强智能、群体智能等为核心的发展方向。借鉴人工智能在其他领域的成功经验,引入大数据、机器学习、深度学习等新技术,以声场传播理论与建模技术、目标特征分析与建模技术、水声信号处理理论与方法为依托,突破智能化声呐信息处理技术,有望实现声呐探测性能由“量变”到“质变”的提升。 展开更多
关键词 智能化 人工智能 大数据 声呐信息 声呐探测 水声信号
在线阅读 下载PDF
基于机器学习的城镇满水排水管网三维模型重建技术
20
作者 封小宇 朱洁明 +1 位作者 胡臻臻 张人航 《智能物联技术》 2025年第1期120-124,共5页
针对城镇满水排水管网的三维模型重建问题,提出一种基于声呐点云数据的高精度建模方法。首先,预处理原始点云数据,包括去噪、补全和优化,并引入PointMixup技术实现数据增强,以提升模型训练的健壮性和泛化能力;其次,采用基于梯度分析的... 针对城镇满水排水管网的三维模型重建问题,提出一种基于声呐点云数据的高精度建模方法。首先,预处理原始点云数据,包括去噪、补全和优化,并引入PointMixup技术实现数据增强,以提升模型训练的健壮性和泛化能力;其次,采用基于梯度分析的权重分配法与随机森林模型结合对满水排水管道进行形状拟合,以准确还原管道几何特征;最后,通过提取多分辨率信息,结合Poisson重建技术,在拟合管道形状和原始点云数据的双重约束下,生成细节丰富的三维排水管网模型。以实测水下机器人搭载断面声呐获取的点云数据为实验对象,验证了所提方法的有效性。实验结果表明,该方法能够完整提取管道内部沉积物和水面特征信息,精准重建管道三维结构,同时清晰展示管道的功能性缺陷,具有较高的工程应用价值。 展开更多
关键词 声呐点云数据 机器学习 城镇排水管网 点云分类 规则化处理 三维重建
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部