Innovating distillation technology to improve the efficiency of distillation equipment,reduce energy consumption,and increase product purity is an important challenge for the rapid development of the distillation indu...Innovating distillation technology to improve the efficiency of distillation equipment,reduce energy consumption,and increase product purity is an important challenge for the rapid development of the distillation industry.In this paper,steady-state simulations are developed for the separated isopropanol and water systems,and the sensitive temperature stage locations are determined using sensitivity and singular value decomposition(SVD).An open-loop steady-state gain analysis of the isopropanol/water system was performed,and a series of dynamic control schemes were designed and optimized to resist±10% feed flow disturbances and ±5% feed composition disturbances,comparing the performance of the control schemes one by one through IAE error analysis.The results show that the side-stream extractive distillation separation of isopropanol and water system using a single temperature fixed reflux ratio control loop suffers from a large product shift problem.One of the key control loops is to control the isopropanol purity by controlling the bottom of the column flow rate,and the scheme performs well under both single-temperature control and dual-temperature control,effectively resisting ±10% feed flow disturbances and ±5% feed composition disturbances.The improvement of product purity can be seen from the compone nt controllers play an important role,while the feed-fo rward effect under certain conditions can also enable the system to quickly restore stability and improve the system response speed.展开更多
AIM:To investigate the effect of side-stream smoking on gut microflora composition,intestinal inflammation and expression of tight junction proteins.METHODS:C57BL/6 mice were exposed to side-stream cigarette smoking f...AIM:To investigate the effect of side-stream smoking on gut microflora composition,intestinal inflammation and expression of tight junction proteins.METHODS:C57BL/6 mice were exposed to side-stream cigarette smoking for one hour daily over eight weeks.Cecal contents were collected for microbial composition analysis.Large intestine was collected for immunoblotting and quantitative reverse transcriptase polymerase chain reaction analyses of the inflammatory pathway and tight junction proteins.RESULTS:Side-stream smoking induced significant changes in the gut microbiota with increased mouse intestinal bacteria,Clostridium but decreased Fermicutes(Lactoccoci and Ruminococcus),Enterobacteriaceae family and Segmented filamentous baceteria compared to the control mice.Meanwhile,side-stream smoking inhibited the nuclear factor-κB pathway with reduced phosphorylation of p65 and IκBα,accompanied with unchanged mRNA expression of tumor necrosis factor-α or interleukin-6.The contents of tight junction proteins,claudin3 and ZO2 were up-regulated in the large intestine of mice exposed side-stream smoking.In addition,side-stream smoking increased c-Jun N-terminal kinase and p38 MAPK kinase signaling,while inhibiting AMPactivated protein kinase in the large intestine.CONCLUSION:Side-stream smoking altered gut microflora composition and reduced the inflammatory response,which was associated with increased expression of tight junction proteins.展开更多
To study the genotoxicity effect of environmental tobacco side-stream smokes (ETSS) on oxidative DNA damage and its molecular mechanism. Methods DNA adduct 8-hydroxydeoxyguanosine (8-OHdG) was used ...To study the genotoxicity effect of environmental tobacco side-stream smokes (ETSS) on oxidative DNA damage and its molecular mechanism. Methods DNA adduct 8-hydroxydeoxyguanosine (8-OHdG) was used as a biomarker of oxidative DNA damage. The level of 8-OHdG in DNA exposed to ETSS was detected by high performance liquid chromatography with electrochemical detection. Organic and inorganic components in ETSS were analyzed by gas chromatography-mass spectrum and atomic absorption spectrum respectively. Results Particle matters (PMs) and volatile organic compounds (VOCs) in ETSS could directly induce oxidative DNA damage and formation of 8-OHdG. There were 123 and 84 kinds of organic components in PMs and VOCs respectively, and 7 kinds of inorganic components in ETSS. Some components, especially quinones and polyphenols in ETSS, could produce free radicals in vitro by auto-oxidation without any biological activity systems, and with the catalytic reaction of metals, the DNA adduct 8-OHdG was produced. Conclusion ETSS have biological oxidative effect on DNA in vitro and in vivo, and expressed direct genotoxicity. 8-OHdG is a valuable biomarker of oxidative DNA damage.展开更多
A major economical industrial challenge from pineapple (Ananas sp.) processing contributing to environmental pollution is the organic side-streams of pineapple. The physicochemical, proximate and sensory properties of...A major economical industrial challenge from pineapple (Ananas sp.) processing contributing to environmental pollution is the organic side-streams of pineapple. The physicochemical, proximate and sensory properties of organic sidestream pineapple syrup (OSPS) developed from Smooth cayenne, Sugar loaf and MD2 pineapple varieties were evaluated. Organic side-stream pineapple syrup developed from MD2 recorded the highest moisture content with a corresponding water activity. The colour change in OSPS was significant among the three varieties and Sugar loaf variety deviated from the standard yellow colour more than Smooth cayenne and MD2 varieties. This was buttress by the high Total Soluble Solids in 10% and 20% dilutions of Sugar loaf. The OSPS was acidic. In bread, incorporating 5% OSPS (w:w) of Sugar loaf recorded the highest percentage acceptability among the pineapple varieties. Interestingly, in the production of cakes with 15%, 20% and 30% OSPS, MD2 recorded the highest percentage overall acceptance. For bread and cake, there was varied significance (P 2 and 5% Sugar loaf was more acceptable.展开更多
基金the Key Research and Development Plan of Shandong Province (Major Scientific and Technological Innovation Project) (2021ZDSYS24)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai) (AMGM2023A09)the Open Project Program of Fujian Universities Engineering Research Center of Reactive Distillation Technology (RDRC202204), Fuzhou University。
文摘Innovating distillation technology to improve the efficiency of distillation equipment,reduce energy consumption,and increase product purity is an important challenge for the rapid development of the distillation industry.In this paper,steady-state simulations are developed for the separated isopropanol and water systems,and the sensitive temperature stage locations are determined using sensitivity and singular value decomposition(SVD).An open-loop steady-state gain analysis of the isopropanol/water system was performed,and a series of dynamic control schemes were designed and optimized to resist±10% feed flow disturbances and ±5% feed composition disturbances,comparing the performance of the control schemes one by one through IAE error analysis.The results show that the side-stream extractive distillation separation of isopropanol and water system using a single temperature fixed reflux ratio control loop suffers from a large product shift problem.One of the key control loops is to control the isopropanol purity by controlling the bottom of the column flow rate,and the scheme performs well under both single-temperature control and dual-temperature control,effectively resisting ±10% feed flow disturbances and ±5% feed composition disturbances.The improvement of product purity can be seen from the compone nt controllers play an important role,while the feed-fo rward effect under certain conditions can also enable the system to quickly restore stability and improve the system response speed.
基金Supported by INBRE P20RR016474USDA-NRI 200835203-19084USDA-AFRI 2009-65203-05716
文摘AIM:To investigate the effect of side-stream smoking on gut microflora composition,intestinal inflammation and expression of tight junction proteins.METHODS:C57BL/6 mice were exposed to side-stream cigarette smoking for one hour daily over eight weeks.Cecal contents were collected for microbial composition analysis.Large intestine was collected for immunoblotting and quantitative reverse transcriptase polymerase chain reaction analyses of the inflammatory pathway and tight junction proteins.RESULTS:Side-stream smoking induced significant changes in the gut microbiota with increased mouse intestinal bacteria,Clostridium but decreased Fermicutes(Lactoccoci and Ruminococcus),Enterobacteriaceae family and Segmented filamentous baceteria compared to the control mice.Meanwhile,side-stream smoking inhibited the nuclear factor-κB pathway with reduced phosphorylation of p65 and IκBα,accompanied with unchanged mRNA expression of tumor necrosis factor-α or interleukin-6.The contents of tight junction proteins,claudin3 and ZO2 were up-regulated in the large intestine of mice exposed side-stream smoking.In addition,side-stream smoking increased c-Jun N-terminal kinase and p38 MAPK kinase signaling,while inhibiting AMPactivated protein kinase in the large intestine.CONCLUSION:Side-stream smoking altered gut microflora composition and reduced the inflammatory response,which was associated with increased expression of tight junction proteins.
基金The research was supported and financed by brainstorm project and public good fund from the Ministry of Science and TechnologyChina (2001BA704B01& 2001DIA10001).
文摘To study the genotoxicity effect of environmental tobacco side-stream smokes (ETSS) on oxidative DNA damage and its molecular mechanism. Methods DNA adduct 8-hydroxydeoxyguanosine (8-OHdG) was used as a biomarker of oxidative DNA damage. The level of 8-OHdG in DNA exposed to ETSS was detected by high performance liquid chromatography with electrochemical detection. Organic and inorganic components in ETSS were analyzed by gas chromatography-mass spectrum and atomic absorption spectrum respectively. Results Particle matters (PMs) and volatile organic compounds (VOCs) in ETSS could directly induce oxidative DNA damage and formation of 8-OHdG. There were 123 and 84 kinds of organic components in PMs and VOCs respectively, and 7 kinds of inorganic components in ETSS. Some components, especially quinones and polyphenols in ETSS, could produce free radicals in vitro by auto-oxidation without any biological activity systems, and with the catalytic reaction of metals, the DNA adduct 8-OHdG was produced. Conclusion ETSS have biological oxidative effect on DNA in vitro and in vivo, and expressed direct genotoxicity. 8-OHdG is a valuable biomarker of oxidative DNA damage.
文摘A major economical industrial challenge from pineapple (Ananas sp.) processing contributing to environmental pollution is the organic side-streams of pineapple. The physicochemical, proximate and sensory properties of organic sidestream pineapple syrup (OSPS) developed from Smooth cayenne, Sugar loaf and MD2 pineapple varieties were evaluated. Organic side-stream pineapple syrup developed from MD2 recorded the highest moisture content with a corresponding water activity. The colour change in OSPS was significant among the three varieties and Sugar loaf variety deviated from the standard yellow colour more than Smooth cayenne and MD2 varieties. This was buttress by the high Total Soluble Solids in 10% and 20% dilutions of Sugar loaf. The OSPS was acidic. In bread, incorporating 5% OSPS (w:w) of Sugar loaf recorded the highest percentage acceptability among the pineapple varieties. Interestingly, in the production of cakes with 15%, 20% and 30% OSPS, MD2 recorded the highest percentage overall acceptance. For bread and cake, there was varied significance (P 2 and 5% Sugar loaf was more acceptable.