Deer, particularly white-tailed deer (Odocoileus virginianus), damage row crops such as soybean (Glycine max L.) and are a perceived problem in the continental US. Currently, the only widely used technique to control ...Deer, particularly white-tailed deer (Odocoileus virginianus), damage row crops such as soybean (Glycine max L.) and are a perceived problem in the continental US. Currently, the only widely used technique to control deer from crop browsing is establishment of fences, which is expensive, labor intensive, and most of the time ineffective. Studies have shown that sicklepod, Senna obtusifolia (L.), contains anthraquinone derivatives, which in separate studies were shown to be toxic to cattle, rats, rabbits, and horses, and repel herbivores primarily birds. However, information of the deer-repelling property of anthraquinone in sicklepod is lacking. Field tests conducted at our Captive Deer Facility at MississippiStateUniversity(MSU) confirmed the deer-repelling property of anthraquinone extracts from sicklepod. Soybean plants applied with control treatment (water) were browsed by deer, while plants applied with sicklepod anthraquinone extracts were avoided. Using chromatography techniques, we found the levels of anthraquinone derivatives (chrysophanol, emodin) in sicklepod plant parts in the order: root > fruit > stem/leaf. Hydrolysis of water extracts of sicklepod seed produced high emodin concentration, suggesting emodin glycoside as the main form of anthraquinone glycoside in sicklepod seed. Deer-repelling compounds can be extracted in its pure form from sicklepod and applied on soybean to increase its repelling efficacy on deer, and at the same time protect soybean yields.展开更多
Comparative studies were conducted on mycelial preparations of the bioherbicide, Myrothecium verrucaria (MV) strain IMI 361690 and a recently discovered sector (MV-Sector BSH) of this fungus. The whitish sector was di...Comparative studies were conducted on mycelial preparations of the bioherbicide, Myrothecium verrucaria (MV) strain IMI 361690 and a recently discovered sector (MV-Sector BSH) of this fungus. The whitish sector was discovered, isolated, grown in pure culture on PDA and found to be a stable, non-spore producing mutant when cultured over several months under conditions that cause circadian sporulation during growth of its MV parent. Application of MV and MV-Sector BSH mycelial preparations to intact plants (hemp sesbania and sicklepod) and leaf discs (kudzu and glyphosate-resistant Palmer amaranth) showed that the sector efficacy was generally equal to, or slightly lower than MV. Bioassays of MV and this sector on seed germination and early growth of sicklepod and hemp sesbania seeds demonstrated that hemp sesbania seeds were slightly more sensitive to the fungus than sicklepod seeds and that the sector bioherbicidal activity was slightly less than that of MV. SDS-PAGE protein profiles of cellular extracts of MV and the sector and their respective culture supernatants showed several differences with respect to quantity and number of certain protein bands. Overall results showed that the isolate was a non-spore producing mutant with phytotoxicity to several weeds (including weeds tolerant or resistant to glyphosate), and that the phytotoxic effects were generally equivalent to those caused by MV treatment. Results of this first report of a non-sporulating MV mutant that suggest additional studies on protein analysis, and an extended weed host range under greenhouse and field conditions are needed in order to further evaluate its possible bioherbicidal potential.展开更多
Palmer amaranth, sicklepod and pitted morningglory are the three most common and troublesome weeds in soybean in South Carolina. They exhibit very aggressive growth capabilities and if left uncontrolled in fields will...Palmer amaranth, sicklepod and pitted morningglory are the three most common and troublesome weeds in soybean in South Carolina. They exhibit very aggressive growth capabilities and if left uncontrolled in fields will cause significant reductions in soybean yields. Dicamba and 2,4-D herbicides are currently having a resurgence in usage due to the recent commercialization of soybean trait technologies with tolerance to these herbicides. Dicamba and 2,4-D when tank mixed with glufosinate and glyphosate may offer additional weed control to resistant weeds through the process of herbicide synergism. Greenhouse experiments were conducted in 2013 at Edisto Research and Education Center near Blackville, SC to evaluate the efficacy of glyphosate, glufosinate, dicamba and 2,4-D treatments alone and in combination on Palmer amaranth, sicklepod, and pitted morningglory at selected heights. Results suggested that glufosinate alone provided the overall best control for all 3 weed species. Glyphosate alone provided the lowest control of all 3 species at all heights. Synergism or improved sicklepod control was observed when glufosinate was tank mixed with dicamba. However, as sicklepod increased in height, glufosinate + 2,4-D or dicamba combination offered the best control compared to glufosinate alone (90% versus 86% in 20 cm plants and 87% versus 85% in 30 cm plant). In the 5 cm Palmer amaranth, decreased control was observed when glyphosate or glufosinate was tank mixed with 2,4-D. These experiments showed that glufosinate alone and/or in combination with 2,4-D or dicamba was the overall best treatment on the three broadleaf weed species.展开更多
Aminooxyacetate (AOA) is a pyridoxal phosphate antagonist that inhibits various plant enzymes (including transaminases) which require pyridoxal phosphate as a cofactor and it exhibits phytotoxic and herbicidal propert...Aminooxyacetate (AOA) is a pyridoxal phosphate antagonist that inhibits various plant enzymes (including transaminases) which require pyridoxal phosphate as a cofactor and it exhibits phytotoxic and herbicidal properties. We examined AOA and its analog, </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">-butoxycarbonyl-AOA (Boc-AOA) for phytotoxicity, interactions with weed pathogens (bioherbicides), and effects on an important pyridoxal requiring enzyme, cysteine synthase (CS, E.C. 4.2.99.8). Studies were performed on two weeds, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, hemp sesbania [</span><i><span style="font-family:Verdana;">Sesbania exaltata</span></i><span style="font-family:Verdana;"> (Raf.) Rybd. Ex A.W. Hill] and sicklepod (</span><i><span style="font-family:Verdana;">Senna obtusifolia</span></i><span style="font-family:Verdana;">), and two pathogens, (</span><i><span style="font-family:Verdana;">Colletotrichum truncatum</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Alternaria cassiae</span></i><span style="font-family:Verdana;">), that are bioherbicidal agents against hemp sesbania and sicklepod, respectively. Pathogenicity tests, and assays for extractable, and </span><i><span style="font-family:Verdana;">in vitro </span></i><span style="font-family:Verdana;">CS activities were utilized. Phytotoxicity bioassays indicated that the bulky </span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">-butoxycarbonyl moiety substitution on the AOA molecule did not substantially hinder expression of biological activity of Boc-AOA in these tests. Generally, spray application of the compounds to young dark-grown seedlings caused little growth effects, but root-feeding of the chemicals reduced growth (stem elongation) in both weeds. Hemp sesbania was generally more tolerant than sicklepod to these compounds. The only apparent positive interaction of the chemicals with these pathogens was the Boc-AOA:</span></span><span style="font-family:""> </span><i><span style="font-family:Verdana;">C. truncatum </span></i><span style="font-family:""><span style="font-family:Verdana;">combination treatment on hemp sesbania. Both compounds reduced extractable CS in the seedlings by 30%, 72 h after treatment. CS activity was reduced by 15% in hemp sesbania treated with </span><i><span style="font-family:Verdana;">C. truncatum</span></i><span style="font-family:Verdana;"> but increased 20% above control levels after infection of sicklepod by</span><i><span style="font-family:Verdana;"> A. cassiae</span></i><span style="font-family:Verdana;">. This latter effect suggests that CS may be involved in sicklepod defense mechanisms against this pathogen.展开更多
文摘Deer, particularly white-tailed deer (Odocoileus virginianus), damage row crops such as soybean (Glycine max L.) and are a perceived problem in the continental US. Currently, the only widely used technique to control deer from crop browsing is establishment of fences, which is expensive, labor intensive, and most of the time ineffective. Studies have shown that sicklepod, Senna obtusifolia (L.), contains anthraquinone derivatives, which in separate studies were shown to be toxic to cattle, rats, rabbits, and horses, and repel herbivores primarily birds. However, information of the deer-repelling property of anthraquinone in sicklepod is lacking. Field tests conducted at our Captive Deer Facility at MississippiStateUniversity(MSU) confirmed the deer-repelling property of anthraquinone extracts from sicklepod. Soybean plants applied with control treatment (water) were browsed by deer, while plants applied with sicklepod anthraquinone extracts were avoided. Using chromatography techniques, we found the levels of anthraquinone derivatives (chrysophanol, emodin) in sicklepod plant parts in the order: root > fruit > stem/leaf. Hydrolysis of water extracts of sicklepod seed produced high emodin concentration, suggesting emodin glycoside as the main form of anthraquinone glycoside in sicklepod seed. Deer-repelling compounds can be extracted in its pure form from sicklepod and applied on soybean to increase its repelling efficacy on deer, and at the same time protect soybean yields.
文摘Comparative studies were conducted on mycelial preparations of the bioherbicide, Myrothecium verrucaria (MV) strain IMI 361690 and a recently discovered sector (MV-Sector BSH) of this fungus. The whitish sector was discovered, isolated, grown in pure culture on PDA and found to be a stable, non-spore producing mutant when cultured over several months under conditions that cause circadian sporulation during growth of its MV parent. Application of MV and MV-Sector BSH mycelial preparations to intact plants (hemp sesbania and sicklepod) and leaf discs (kudzu and glyphosate-resistant Palmer amaranth) showed that the sector efficacy was generally equal to, or slightly lower than MV. Bioassays of MV and this sector on seed germination and early growth of sicklepod and hemp sesbania seeds demonstrated that hemp sesbania seeds were slightly more sensitive to the fungus than sicklepod seeds and that the sector bioherbicidal activity was slightly less than that of MV. SDS-PAGE protein profiles of cellular extracts of MV and the sector and their respective culture supernatants showed several differences with respect to quantity and number of certain protein bands. Overall results showed that the isolate was a non-spore producing mutant with phytotoxicity to several weeds (including weeds tolerant or resistant to glyphosate), and that the phytotoxic effects were generally equivalent to those caused by MV treatment. Results of this first report of a non-sporulating MV mutant that suggest additional studies on protein analysis, and an extended weed host range under greenhouse and field conditions are needed in order to further evaluate its possible bioherbicidal potential.
文摘Palmer amaranth, sicklepod and pitted morningglory are the three most common and troublesome weeds in soybean in South Carolina. They exhibit very aggressive growth capabilities and if left uncontrolled in fields will cause significant reductions in soybean yields. Dicamba and 2,4-D herbicides are currently having a resurgence in usage due to the recent commercialization of soybean trait technologies with tolerance to these herbicides. Dicamba and 2,4-D when tank mixed with glufosinate and glyphosate may offer additional weed control to resistant weeds through the process of herbicide synergism. Greenhouse experiments were conducted in 2013 at Edisto Research and Education Center near Blackville, SC to evaluate the efficacy of glyphosate, glufosinate, dicamba and 2,4-D treatments alone and in combination on Palmer amaranth, sicklepod, and pitted morningglory at selected heights. Results suggested that glufosinate alone provided the overall best control for all 3 weed species. Glyphosate alone provided the lowest control of all 3 species at all heights. Synergism or improved sicklepod control was observed when glufosinate was tank mixed with dicamba. However, as sicklepod increased in height, glufosinate + 2,4-D or dicamba combination offered the best control compared to glufosinate alone (90% versus 86% in 20 cm plants and 87% versus 85% in 30 cm plant). In the 5 cm Palmer amaranth, decreased control was observed when glyphosate or glufosinate was tank mixed with 2,4-D. These experiments showed that glufosinate alone and/or in combination with 2,4-D or dicamba was the overall best treatment on the three broadleaf weed species.
文摘Aminooxyacetate (AOA) is a pyridoxal phosphate antagonist that inhibits various plant enzymes (including transaminases) which require pyridoxal phosphate as a cofactor and it exhibits phytotoxic and herbicidal properties. We examined AOA and its analog, </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">-butoxycarbonyl-AOA (Boc-AOA) for phytotoxicity, interactions with weed pathogens (bioherbicides), and effects on an important pyridoxal requiring enzyme, cysteine synthase (CS, E.C. 4.2.99.8). Studies were performed on two weeds, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, hemp sesbania [</span><i><span style="font-family:Verdana;">Sesbania exaltata</span></i><span style="font-family:Verdana;"> (Raf.) Rybd. Ex A.W. Hill] and sicklepod (</span><i><span style="font-family:Verdana;">Senna obtusifolia</span></i><span style="font-family:Verdana;">), and two pathogens, (</span><i><span style="font-family:Verdana;">Colletotrichum truncatum</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Alternaria cassiae</span></i><span style="font-family:Verdana;">), that are bioherbicidal agents against hemp sesbania and sicklepod, respectively. Pathogenicity tests, and assays for extractable, and </span><i><span style="font-family:Verdana;">in vitro </span></i><span style="font-family:Verdana;">CS activities were utilized. Phytotoxicity bioassays indicated that the bulky </span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">-butoxycarbonyl moiety substitution on the AOA molecule did not substantially hinder expression of biological activity of Boc-AOA in these tests. Generally, spray application of the compounds to young dark-grown seedlings caused little growth effects, but root-feeding of the chemicals reduced growth (stem elongation) in both weeds. Hemp sesbania was generally more tolerant than sicklepod to these compounds. The only apparent positive interaction of the chemicals with these pathogens was the Boc-AOA:</span></span><span style="font-family:""> </span><i><span style="font-family:Verdana;">C. truncatum </span></i><span style="font-family:""><span style="font-family:Verdana;">combination treatment on hemp sesbania. Both compounds reduced extractable CS in the seedlings by 30%, 72 h after treatment. CS activity was reduced by 15% in hemp sesbania treated with </span><i><span style="font-family:Verdana;">C. truncatum</span></i><span style="font-family:Verdana;"> but increased 20% above control levels after infection of sicklepod by</span><i><span style="font-family:Verdana;"> A. cassiae</span></i><span style="font-family:Verdana;">. This latter effect suggests that CS may be involved in sicklepod defense mechanisms against this pathogen.